-->

Логика и рост научного знания

На нашем литературном портале можно бесплатно читать книгу Логика и рост научного знания, Поппер Карл Раймунд-- . Жанр: Самосовершенствование. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Логика и рост научного знания
Название: Логика и рост научного знания
Дата добавления: 16 январь 2020
Количество просмотров: 253
Читать онлайн

Логика и рост научного знания читать книгу онлайн

Логика и рост научного знания - читать бесплатно онлайн , автор Поппер Карл Раймунд

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 25 26 27 28 29 30 31 32 33 ... 186 ВПЕРЕД
Перейти на страницу:

на достаточно ясно и определенно для того, чтобы о

только одним способом: они односторонне разрешимы.

каждом новом предположении можно было судить, яв-

Если обнаруживается, что нечто существует здесь и те-

ляется ли оно модификацией и, следовательно, пере-

перь, то благодаря этому строго экзистенциальное вы-

смотром этой системы или нет.

сказывание может быть верифицировано, а строго уни-

Я полагаю, что именно в этом кроется причина

версальное— фальсифицировано.

стремления ученых к построению строгой научной си-

Указанная асимметрия вместе с ее следствием — од-

стемы. Такой системой является так называемая «ак-

носторонней фальсифицируемостью универсальных вы-

сиоматизированная система» —· та форма, которую Гиль-

сказываний эмпирической науки — теперь, может быть, берт смог придать, например, некоторым разделам тео-

покажется менее подозрительной, чем прежде (см.

ретической физики. При этом стремятся выделить все

разд. 6). Мы видим, что она не связана ни с каким

(но не более) предположения, которые необходимы для

чисто логическим -отношением. Напротив, соответствую-

формирования оснований такой системы. Обычно их

щие логические отношения являются симметричными.

называют «аксиомами» («постулатами» или «исходными

предложениями»; наш способ использования термина

«аксиома» не связан с требованием истинности аксиом).

*1δ Слово «изолированный» используется здесь для того, чтобы

избежать неправильного понимания, хотя высказанная мысль, Аксиомы выбираются таким образом, чтобы все другие

я думаю, достаточно ясна: изолированное экзистенциальное высказы-

высказывания, принадлежащие к теоретической систе-

вание никогда не фальсифицируемо, но, будучи включено в контекст

других высказываний, экзистенциальное высказывание может в не-

*

которых случаях увеличивать эмпирическое содержание всего кон-

16 Слово «только» здесь не следует принимать слишком серьез-

но. Дело обстоит совсем просто. Если характерной чертой эмпириче-

текста: оно может обогатить теорию, к которой принадлежит, и уве-

ской науки является рассмотрение сингулярных высказываний в ка-

личить степень ее фальсифицируемости, или проверяемости. В этом

честве проверочных высказываний, то указанная асимметрия возни-

случае теоретическая система, включающая данное экзистенциальное

кает в силу того, что относительно сингулярных высказываний уни-

высказывание, должна рассматриваться как научная, а не как мета-

версальные высказывания можно только фальсифицировать, а экзи-

физическая.

стенциальные высказывания — только верифицировать.

96

7—913 97

17. Возможные интерпретации системы аксиом

ме, могли быть выведены из аксиом посредством чисто

логических или математических преобразований.

Тезис классического рационализма, согласно кото-

Теоретическую систему можно назвать аксиоматизи-

рому «аксиомы» некоторой системы, например аксио-

рованной, если сформулировано множество высказыва-

мы евклидовой геометрии, должны рассматриваться как

ний-аксиом, удовлетворяющее следующим четырем фун-

непосредственно или интуитивно несомненные, как са-

даментальным требованиям, (а) Система аксиом долж-

моочевидные, здесь обсуждаться не будет. Упомяну

на быть непротиворечивой (то есть в ней не должно

лишь о том, что сам я не разделяю этого мнения. Я счи-

иметь места ни самопротиворечивых аксиом, ни противо-

таю допустимыми две различные интерпретации любой

речий между аксиомами). Это эквивалентно требова-

системы аксиом. Аксиомы можно рассматривать либо

нию, что не всякое произвольное высказывание выводи-

(1) как конвенции, либо (2) как эмпирические, или

мо в такой системе (ср. разд. 24). (Ь) Аксиомы данной

научные, гипотезы.

системы должны быть независимыми, то есть система

(1) Если аксиомы рассматриваются как конвенции, не должна содержать аксиом, выводимых из остальных

то они ограничивают использование или значение вво-

аксиом. (Иными словами, некоторое высказывание мож-

димых аксиомами фундаментальных идей (исходных

но назвать аксиомой только в том случае, если оно не

терминов или понятий) ; они устанавливают, что мож-

выводимо в оставшейся после его удаления части систе-

но, а чего нельзя говорить относительно этих фунда-

мы.) Эти два условия относятся к самой системе ак-

ментальных идей. Иногда аксиомы рассматриваются

сиом. Что же касается отношения системы аксиом к

как «неявные определения» тех объектов, которые они

остальной части теории, то аксиомы должны быть (с) вводят. Такое понимание аксиом можно разъяснить с

достаточными для дедукции всех высказываний, при-

помощью аналогии между аксиоматической системой и

надлежащих к аксиоматизируемой теории, и (d) необ-

(непротиворечивой и разрешимой) системой уравнений.

ходимыми в том смысле, что система не должна содер-

Действительно, допустимые значения «неизвестных»

жать излишних предположений17.

(или переменных), входящих в систему уравнений, так

В аксиоматизированной таким образом теории мож-

или иначе детерминируются ею. Даже если системы

но исследовать взаимную зависимость различных частей

уравнений недостаточно для задания единственного ре-

этой системы. Например, мы можем исследовать, вы-

шения, она не позволяет подставлять на место «неиз-

водима ли некоторая часть теории из определенного

вестных» (переменных) любую мыслимую комбинацию

подмножества аксиом. Исследования такого рода (о ко-

значений. Одни комбинации значений система уравне-

торых подробнее говорится в [70, разд. 63, 64, 75—77] ) ний характеризует как допустимые, другие — как недо-

имеют важное значение для проблемы фальсифицируе-

пустимые; она проводит различие между классом допу-

мости. Они делают ясным ответ на вопрос о том, поче-

стимых значений системы и классом недопустимых зна-

му фальсификация логически выведенного высказыва-

чений. Аналогичным образом системы понятий можно

ния иногда может затронуть не всю систему, а только

разделить на допустимые и недопустимые с помощью

часть ее, которая и считается фальсифицированной в

того, что можно назвать «высказыванием-уравнением».

этом случае. Хотя теории физики в общем не полностью

Высказывание-уравнение получается из пропозицио-

аксиоматизируемы, установление связей между их раз-

нальной функции, или функции-высказывания (ср. вы-

личными частями помогает нам решить, какая из этих

ше, прим. 14), которая представляет собой неполное

частей затрагивается некоторым отдельным фальсифи-

высказывание, имеющее одно или несколько «пустых

цирующим наблюдением.

мест». Двумя примерами таких пропозициональных

функций, или функций-высказываний, являются: «Изо-

топ элемента χ имеет атомный вес 65» и «х--у=12».

Каждая такая пропозициональная функция превра-

17 В связи с этими четырьмя условиями и содержанием следую-

щего раздела см. несколько другое понимание рассматриваемых

щается в высказывание благодаря подстановке опреде-

проблем в [10, с. 70].

Г*

99

98

ленных значений на пустые места — вместо χ и у. По-

таким образом, не может рассматриваться как система

лучающиеся в результате подстановки высказывания

1 ... 25 26 27 28 29 30 31 32 33 ... 186 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название