-->

Программирование на языке Ruby

На нашем литературном портале можно бесплатно читать книгу Программирование на языке Ruby, Фултон Хэл-- . Жанр: Программирование. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Программирование на языке Ruby
Название: Программирование на языке Ruby
Дата добавления: 16 январь 2020
Количество просмотров: 514
Читать онлайн

Программирование на языке Ruby читать книгу онлайн

Программирование на языке Ruby - читать бесплатно онлайн , автор Фултон Хэл
Ruby — относительно новый объектно-ориентированный язык, разработанный Юкихиро Мацумото в 1995 году и позаимствовавший некоторые особенности у языков LISP, Smalltalk, Perl, CLU и других. Язык активно развивается и применяется в самых разных областях: от системного администрирования до разработки сложных динамических сайтов. Книга является полноценным руководством по Ruby — ее можно использовать и как учебник, и как справочник, и как сборник ответов на вопросы типа «как сделать то или иное в Ruby». В ней приведено свыше 400 примеров, разбитых по различным аспектам программирования, и к которым автор дает обстоятельные комментарии. Издание предназначено для программистов самого широкого круга и самой разной квалификации, желающих научиться качественно и профессионально работать на Ruby.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 60 61 62 63 64 65 66 67 68 ... 266 ВПЕРЕД
Перейти на страницу:

z = BigDecimal("1.2")

if (x - y) == z

 puts "равны" # Печатается "равны"!

else

 puts "не равны"

end

а = x*y*z

a.to_s        # "0.768Е1" (по умолчанию: научная нотация)

a.to_s("F")   # "7.68" (обычная запись)

Если необходимо, можно задать число значащих цифр. Метод

precs
возвращает эту информацию в виде массива, содержащего два числа: количество использованных байтов и максимальное число значащих цифр.

x = BigDecimal ("1.234",10)

y = BigDecimal("1.234",15)

x.precs # [8, 16]

y.precs # [8, 20]

В каждый момент число использованных байтов может оказаться меньше максимального. Максимум может также оказаться больше запрошенного вами (поскольку

BigDecimal
пытается оптимизировать использование внутренней памяти). У обычных операций (сложение, вычитание, умножение и деление) есть варианты принимающие в качестве дополнительного параметра число значащих цифр. Если результат содержит больше значащих цифр, чем указано, производится округление до заданного числа знаков.

a = BigDecimal("1.23456")

b = BigDecimal("2.45678")

# В комментариях "BigDecimal:objectid" опущено.

c = a+b          # <'0.369134Е112(20)>

c2 = a.add(b,4)  # <'0.3691Е1',8(20)>

d = a-b          # <'-0.122222E1',12(20)>

d2 = a.sub(b,4)  # <'-0.1222E1',8(20)>

e = a*b          # <'0.30330423168E116(36)>

e2 = a.mult(b,4) # <'0.3033E1',8(36)>

f = a/b          # <'0.502511417383729922907221E0',24(32)>

f2 = a.div(b,4)  # <'0.5025E0',4(16)>

В классе

BigDecimal
определено и много других функций, например
floor
,
abs
и т.д. Как и следовало ожидать, имеются операторы
%
и
**
, а также операторы сравнения, к примеру
<
. Оператор
==
не умеет округлять свои операнды — эта обязанность возлагается на программиста.

В модуле

BigMath
определены константы
E
и
PI
с произвольной точностью. (На самом деле это методы, а не константы.) Там же определены функции
sin
,
cos
,
exp
и пр.; все они принимают число значащих цифр в качестве параметра. Следующие подбиблиотеки являются дополнениями к
BigDecimal
.

bigdecimal/math   
 Модуль
BigMath

bigdecimal/jacobian
Методы для вычисления матрицы Якоби

bigdecimal/ludcmp 
 Модуль
LUSolve
, разложение матрицы в произведение верхнетреугольной и нижнетреугольной

bigdecimal/newton 
 Методы
nlsolve
и
norm

В настоящей главе эти подбиблиотеки не описываются. Для получения дополнительной информации обратитесь к сайту ruby-doc.org или любому подробному справочному руководству.

5.9. Работа с рациональными числами

Класс

Rational
позволяет (во многих случаях) производить операции с дробями с «бесконечной» точностью, но лишь если это настоящие рациональные числа (то есть частное от деления двух целых чисел). К иррациональным числам, например π или e, он неприменим.

Для создания рационального числа мы вызываем специальный метод

Rational
(еще один из немногих методов, имя которого начинается с прописной буквы; обычно такие методы служат для преобразования данных или инициализации).

r = Rational(1,2) # 1/2 или 0.5

s = Rational(1,3) # 1/3 или 0.3333...

t = Rational(1,7) # 1/7 или 0.14...

u = Rational(6,2) # "то же самое, что" 3.0

z = Rational(1,0) # Ошибка!

Результатом операции над двумя рациональными числами, как правило, снова является рациональное число.

r+t # Rational(9, 14)

r-t # Rational(5, 14)

r*s # Rational(1, 6)

r/s # Rational(3, 2)

Вернемся к примеру, на котором мы демонстрировали неточность операций над числами с плавающей точкой (см. раздел 5.4). Ниже мы выполняем те же действия над рациональными, а не вещественными числами и получаем «математически ожидаемый» результат:

x = Rational(1000001,1)/Rational(3,1000)

y = Rational(3,1000)*x

if y == 1000001.0

 puts "да" # Теперь получаем "да"!

else

 puts "нет"

end

Конечно, не любая операция дает рациональное же число в качестве результата:

x = Rational (9,16) # Rational(9, 16)

Math.sqrt(x)        # 0.75

x**0.5 # 0.75

x**Rational(1,2)    # 0.75

Однако библиотека

mathn
в какой-то мере изменяет это поведение (см. раздел 5.12).

5.10. Перемножение матриц

Стандартная библиотека

matrix
предназначена для выполнения операций над числовыми матрицами. В ней определено два класса:
Matrix
и
Vector
.

1 ... 60 61 62 63 64 65 66 67 68 ... 266 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название