Программирование на языке Ruby
Программирование на языке Ruby читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
temp2 = temp.round # -48
Иногда бывает нужно округлить не до целого, а до заданного числа знаков после запятой. В таком случае можно воспользоваться функциями
sprintf
eval
pi = 3.1415926535
pi6 = eval(sprintf("%8.6f",pi)) # 3.141593
pi5 = eval(sprintf("%8.5f",pi)) # 3.14159
pi4 = eval(sprintf("%8.4f",pi)) # 3.1416
Это не слишком красиво. Поэтому инкапсулируем оба вызова функций в метод, который добавим в класс
Float
class Float
def roundf(places)
temp = self.to_s.length
sprintf("%#{temp}.#{places}f",self).to_f
end
end
Иногда требуется округлять до целого по-другому. Традиционное округление
n+0.5
n+0.5
n+1
n
0.5
Float
round2
class Float
def round2
whole = self.floor
fraction = self — whole
if fraction == 0.5
if (whole % 2) == 0
whole
else
whole+1
end
else
self.round
end
end
end
a = (33.4).round2 # 33
b = (33.5).round2 # 34
с = (33.6).round2 # 34
d = (34.4).round2 # 34
e = (34.5).round2 # 34
f = (34.6).round2 # 35
Видно, что
round2
round
Ну а если мы хотим округлять до заданного числа знаков после запятой, но при этом использовать метод «округления до четного»? Тогда нужно добавить в класс
Float
roundf2
class Float
# Определение round2 такое же, как и выше.
def roundf2(places)
shift = 10**places
(self * shift).round2 / shift.to_f
end
end
a = 6.125
b = 6.135
x = a.roundf2(a) #6.12
y = b.roundf2(b) #6.13
У методов
roundf
roundf2
5.4. Сравнение чисел с плавающей точкой
Печально, но факт: в компьютере числа с плавающей точкой представляются неточно. В идеальном мире следующий код напечатал бы «да», но на всех машинах где мы его запускали, печатается «нет»:
x = 1000001.0/0.003
y = 0.003*x
if y == 1000001.0
puts "да"
else
puts "нет"
end
Объясняется это тем, что для хранения числа с плавающей точкой выделено конечное число битов, а с помощью любого, сколь угодно большого, но конечного числа битов нельзя представить периодическую десятичную дробь с бесконечным числом знаков после запятой.
Из-за этой неустранимой неточности при сравнении чисел с плавающей точкой мы можем оказаться в ситуации (продемонстрированной выше), когда с практической точки зрения два числа равны, но аппаратура упрямо считает их различными.
Ниже показан простой способ выполнения сравнения с «поправкой», когда числа считаются равными, если отличаются не более чем на величину, задаваемую программистом:
class Float
EPSILON = 1e-6 # 0.000001
def == (x)
(self-x).abs < EPSILON
end
end
x = 1000001.0/0.003
y = 0.003*x
if y == 1.0 # Пользуемся новым оператором ==.
puts "да" # Теперь печатается "да".
else
puts "нет"
end
В зависимости от ситуации может понадобиться задавать разные погрешности. Для этого определим в классе
Float
equals?
equal?
eql?