Менеджмент. Учебник
Менеджмент. Учебник читать книгу онлайн
Учебник соответствует государственному стандарту для высшего профессионального образования и содержит необходимый объем сведений по направлению «Менеджмент». Главной целью учебника является раскрытие содержания современного менеджмента, ознакомление с его методологией, основными категориями и понятиями, создание теоретической и практической базы для самостоятельной деятельности менеджера в российских условиях.
Книга заинтересует не только студентов вузов и других учащихся, но и широкие круги практикующих менеджеров и государственных служащих, озабоченных ныне проблемами управления организациями: предприятиями, фирмами, учреждениями.
Автор учебника заслуженный деятель науки России, академик Международной академии информатизации профессор В. А. Абчук преподает менеджмент в высшей школе, сам является менеджером-предпринимателем.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
11. Обозначим через х капитал игрока, у – сумму ставки на победу, z – сумму ставки на поражение. Тогда условие задачи можно записать так:
Решая совместно (1) и (2), получим:
Далее, из (1) и (2):
Подставляя полученные значения у и z в (3), будем иметь:
Итак: 1) капитал игрока был равен 200 тыс. у. д. ед.;
2) сумма ставки на победу равна 30 тыс. у. д. ед.;
3) сумма ставки на поражение равна 20 тыс. у. д. ед.
12. Обозначив расстояние от Санкт-Петербурга до бензоколонки через а, а от бензоколонки до Верхнениженска через б, сообразим в соответствии с условием задачи, что расстояние от поселка Закат до бензоколонки – а, а от бензоколонки до поселка Рассвет б.
Следовательно, от поселка Закат до поселка Рассвет т. е. две трети пути от Санкт-Петербурга до Верхнениженска, что составляет х 150 = 100 км.
Искомая плата за проезд, таким образом, равна: 100 : 10= 10 у. д. ед.
13. Это возможно.
Разместив участок III так, как показано на рисунке, нетрудно убедиться, что:
III = I – а – в + а + а + б = I + а – в + б.
С другой стороны,
II = а - в + б.
Следовательно, III = I + II.
Кстати, мы только что доказали теорему Пифагора. Стороны квадратов I и II – это катеты, а стороны квадрата III – гипотенуза АБВ: сумма квадратов катетов равна квадрату гипотенузы. Просто и наглядно.
14. 1) Обозначая площадь, занимаемую оборудованием из контейнера № 1, через x, условие задачи можно математически записать так:
– площадь, занимаемая оборудованием из контейнера № 2, равна x + 10;
– площадь, занимаемая оборудованием из контейнера № 3, равна х + 20.
х+ (х+ 10) + (x + 20) = 402;
3x + 30 = 402;
x =124м2.
Соответственно, площади, занимаемые оборудованием из контейнеров № 2 и № 3, равны 134м2 и 144м2.
2) Обозначим черз п, т и k число раз, во сколько площади цехов А, Б и В больше, чем площади оборудования из контейнеров № 1, № 2 и № 3. По условию задачи n,m и k могут иметь значения лишь 1, 1,5 и 2 каждое.
При этом должно иметь место равенство:
124 х n + 134 х m +144 х k = 613. (*)
Будем рассуждать так:
– если п = 1,5 или 2, то при любых возможных значениях т и k сумма (*) будет меньше 613; следовательно, п может быть равно только 1, а значит, контейнер № 1 предназначен для цеха Б и для значения т остается только 1,5 или 2;
– при этом если т = 2, то при любых возможных п и k сумма (*) будет меньше 613; следовательно, т может быть равно только 1,5, а значит, контейнер № 2 оказывается предназначен для цеха В;
– для k, таким образом, остается только 2, и контейнер № 3 оказывается предназначенным для цеха А.
15. Обозначая вес контейнера с товаром через х, а вес контейнера через у, можно математически записать условие задачи так:
х + (х + 2) = 8, откуда х = 3 тонны.
3 = y + 0,5y, откуда у = 2 тонны.
Следовательно, вес товара равен: 3 - 2 = 1 тонна.
16. Да, это так. Парное число получается путем деления первого числа (а) на (а - 1). Так, если первый партнер внес 3 млн, то второй должен внести
При этом сложение капитала даст млн, как и его умножение:
17. Необходимо первую бочку ставить строго по центру площадки, а все остальные ставить симметрично от центра по отношению к каждой очередной бочке другого предприятия.
18. Рассмотрим два численных примера.
1) Если ребро малого ящика равно 1 м, то длина, которую занимает груз, равна 1 + 2 x 1 = 3 погонных метра, и стоимость перевозки, исходя из длины груза, составляет 20 х 3 = 60 у. д. ед. При этом объем груза равен 13 +(2 x 1)3 =9м3, и стоимость перевозки, исходя из объема, составляет 20 х 9 = 180 у. д. ед. Следовательно, оплата с погонного метра значительно (в три раза) выгоднее.
2) Если ребро малого ящика равно 0,5 м, то длина, которую занимает груз, равна 0,5 + 2 х 0,5 =1,5 погонных метра, и стоимость перевозки, исходя из длины груза, составляет 20 х 1,5 = 30 у. д. ед. При этом объем груза равен (0,5)3 +(2 x 0,5)3 =1,125м3, и стоимость перевозки, исходя из объема, составляет 20 х 1,125 = = 22,50 у. д. ед. Следовательно, оплата здесь существенно выгоднее с объема (на 25 % дешевле).
Таким образом, ответ на вопрос задачи – какого вида оплата выгоднее – неоднозначен и зависит от размера груза.
Интересно и полезно узнать граничное значение этого размера – то, при котором оба вида оплаты равноценны.
Обозначим через х длину ребра малого ящика, при которой наступит равенство погонного и объемного размеров, учитываемых при оплате. При этом будет иметь место следующее очевидное равенство:
х + 2 х х = х3 + (2 х х) , или 3x =9x3.
Итак, если ребро малого ящика короче 0,5 м, выгоднее платить исходя из объема, а если длиннее – исходя из длины. Проверим это утверждение.
При длине ребра малого ящика 0,58 м длина груза составит 0,58 + 2 х 0,58 = 1,74 погонных метра и стоимость перевозки будет равна 20 х 1,74 = 35 у. д. ед. При этом объем груза будет (0,58)3 +(2 x 0,58)3 = 1,74м3 и стоимость перевозки остается без изменений.
19. Первый шаг: поменять местами контейнеры 2 и 1. Второй шаг: поставить 5-й и 6-й после 7-го. Третий шаг: поставить 1-й и 3-й после 4-го. Четвертый шаг: 6-й и 8-й перенести в начало.