-->

Менеджмент. Учебник

На нашем литературном портале можно бесплатно читать книгу Менеджмент. Учебник, Абчук Владимир-- . Жанр: Учебники. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Менеджмент. Учебник
Название: Менеджмент. Учебник
Дата добавления: 16 январь 2020
Количество просмотров: 370
Читать онлайн

Менеджмент. Учебник читать книгу онлайн

Менеджмент. Учебник - читать бесплатно онлайн , автор Абчук Владимир

Учебник соответствует государственному стандарту для высшего профессионального образования и содержит необходимый объем сведений по направлению «Менеджмент». Главной целью учебника является раскрытие содержания современного менеджмента, ознакомление с его методологией, основными категориями и понятиями, создание теоретической и практической базы для самостоятельной деятельности менеджера в российских условиях.

Книга заинтересует не только студентов вузов и других учащихся, но и широкие круги практикующих менеджеров и государственных служащих, озабоченных ныне проблемами управления организациями: предприятиями, фирмами, учреждениями.

Автор учебника заслуженный деятель науки России, академик Международной академии информатизации профессор В. А. Абчук преподает менеджмент в высшей школе, сам является менеджером-предпринимателем.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

11. Обозначим через х капитал игрока, у – сумму ставки на победу, z – сумму ставки на поражение. Тогда условие задачи можно записать так:

Менеджмент. Учебник - _149.jpg

Решая совместно (1) и (2), получим:

Менеджмент. Учебник - _150.jpg

Далее, из (1) и (2):

Менеджмент. Учебник - _151.jpg

Подставляя полученные значения у и z в (3), будем иметь:

Менеджмент. Учебник - _152.jpg

Итак: 1) капитал игрока был равен 200 тыс. у. д. ед.;

2) сумма ставки на победу равна 30 тыс. у. д. ед.;

3) сумма ставки на поражение равна 20 тыс. у. д. ед.

Менеджмент. Учебник - _153.jpg

12. Обозначив расстояние от Санкт-Петербурга до бензоколонки через а, а от бензоколонки до Верхнениженска через б, сообразим в соответствии с условием задачи, что расстояние от поселка Закат до бензоколонки – а, а от бензоколонки до поселка Рассвет б.

Следовательно, от поселка Закат до поселка Рассвет т. е. две трети пути от Санкт-Петербурга до Верхнениженска, что составляет х 150 = 100 км.

Искомая плата за проезд, таким образом, равна: 100 : 10= 10 у. д. ед.

13. Это возможно.

Разместив участок III так, как показано на рисунке, нетрудно убедиться, что:

III = I – а – в + а + а + б = I + а – в + б.

С другой стороны,

II = а - в + б.

Следовательно, III = I + II.

Менеджмент. Учебник - _154.jpg

Кстати, мы только что доказали теорему Пифагора. Стороны квадратов I и II – это катеты, а стороны квадрата III – гипотенуза АБВ: сумма квадратов катетов равна квадрату гипотенузы. Просто и наглядно.

14. 1) Обозначая площадь, занимаемую оборудованием из контейнера № 1, через x, условие задачи можно математически записать так:

– площадь, занимаемая оборудованием из контейнера № 2, равна x + 10;

– площадь, занимаемая оборудованием из контейнера № 3, равна х + 20.

х+ (х+ 10) + (x + 20) = 402;

3x + 30 = 402;

x =124м2.

Соответственно, площади, занимаемые оборудованием из контейнеров № 2 и № 3, равны 134м2 и 144м2.

2) Обозначим черз п, т и k число раз, во сколько площади цехов А, Б и В больше, чем площади оборудования из контейнеров № 1, № 2 и № 3. По условию задачи n,m и k могут иметь значения лишь 1, 1,5 и 2 каждое.

При этом должно иметь место равенство:

124 х n + 134 х m +144 х k = 613. (*)

Будем рассуждать так:

– если п = 1,5 или 2, то при любых возможных значениях т и k сумма (*) будет меньше 613; следовательно, п может быть равно только 1, а значит, контейнер № 1 предназначен для цеха Б и для значения т остается только 1,5 или 2;

– при этом если т = 2, то при любых возможных п и k сумма (*) будет меньше 613; следовательно, т может быть равно только 1,5, а значит, контейнер № 2 оказывается предназначен для цеха В;

– для k, таким образом, остается только 2, и контейнер № 3 оказывается предназначенным для цеха А.

15. Обозначая вес контейнера с товаром через х, а вес контейнера через у, можно математически записать условие задачи так:

х + (х + 2) = 8, откуда х = 3 тонны.

3 = y + 0,5y, откуда у = 2 тонны.

Следовательно, вес товара равен: 3 - 2 = 1 тонна.

16. Да, это так. Парное число получается путем деления первого числа (а) на (а - 1). Так, если первый партнер внес 3 млн, то второй должен внести

Менеджмент. Учебник - _155.jpg

При этом сложение капитала даст млн, как и его умножение:

17. Необходимо первую бочку ставить строго по центру площадки, а все остальные ставить симметрично от центра по отношению к каждой очередной бочке другого предприятия.

18. Рассмотрим два численных примера.

1) Если ребро малого ящика равно 1 м, то длина, которую занимает груз, равна 1 + 2 x 1 = 3 погонных метра, и стоимость перевозки, исходя из длины груза, составляет 20 х 3 = 60 у. д. ед. При этом объем груза равен 13 +(2 x 1)3 =9м3, и стоимость перевозки, исходя из объема, составляет 20 х 9 = 180 у. д. ед. Следовательно, оплата с погонного метра значительно (в три раза) выгоднее.

2) Если ребро малого ящика равно 0,5 м, то длина, которую занимает груз, равна 0,5 + 2 х 0,5 =1,5 погонных метра, и стоимость перевозки, исходя из длины груза, составляет 20 х 1,5 = 30 у. д. ед. При этом объем груза равен (0,5)3 +(2 x 0,5)3 =1,125м3, и стоимость перевозки, исходя из объема, составляет 20 х 1,125 = = 22,50 у. д. ед. Следовательно, оплата здесь существенно выгоднее с объема (на 25 % дешевле).

Таким образом, ответ на вопрос задачи – какого вида оплата выгоднее – неоднозначен и зависит от размера груза.

Интересно и полезно узнать граничное значение этого размера – то, при котором оба вида оплаты равноценны.

Обозначим через х длину ребра малого ящика, при которой наступит равенство погонного и объемного размеров, учитываемых при оплате. При этом будет иметь место следующее очевидное равенство:

х + 2 х х = х3 + (2 х х) , или 3x =9x3.

Менеджмент. Учебник - _156.jpg

Итак, если ребро малого ящика короче 0,5 м, выгоднее платить исходя из объема, а если длиннее – исходя из длины. Проверим это утверждение.

При длине ребра малого ящика 0,58 м длина груза составит 0,58 + 2 х 0,58 = 1,74 погонных метра и стоимость перевозки будет равна 20 х 1,74 = 35 у. д. ед. При этом объем груза будет (0,58)3 +(2 x 0,58)3 = 1,74м3 и стоимость перевозки остается без изменений.

19. Первый шаг: поменять местами контейнеры 2 и 1. Второй шаг: поставить 5-й и 6-й после 7-го. Третий шаг: поставить 1-й и 3-й после 4-го. Четвертый шаг: 6-й и 8-й перенести в начало.

Перейти на страницу:
Комментариев (0)
название