Менеджмент. Учебник
Менеджмент. Учебник читать книгу онлайн
Учебник соответствует государственному стандарту для высшего профессионального образования и содержит необходимый объем сведений по направлению «Менеджмент». Главной целью учебника является раскрытие содержания современного менеджмента, ознакомление с его методологией, основными категориями и понятиями, создание теоретической и практической базы для самостоятельной деятельности менеджера в российских условиях.
Книга заинтересует не только студентов вузов и других учащихся, но и широкие круги практикующих менеджеров и государственных служащих, озабоченных ныне проблемами управления организациями: предприятиями, фирмами, учреждениями.
Автор учебника заслуженный деятель науки России, академик Международной академии информатизации профессор В. А. Абчук преподает менеджмент в высшей школе, сам является менеджером-предпринимателем.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
– т и п должны удовлетворять условию х1 + у1 = Ср2 (из х2 + у2 должен без остатка извлекаться квадратный корень):
Наименьшей возможной парой т и п, удовлетворяющей всем этим условиям, является пара 8 и 7. При этом
Поскольку по условиям задачи минимальная доля (2 тыс. у. д. ед.) принадлежит младшему афганцу, ему причитается и наименьшая премия, равная 2'2 = 4 тыс. у. д. ед. Откуда премия среднего афганца равна:
а старшего афганца –
Соответственно их доли составляют:
Доля средней сестры равна:
а ее премия –
Премия младшей сестры равна:
а старшей–
Соответственно их доли составляют:
Доля старшего брата равна:
127 - 33 = 94 тыс. у. д. ед.,
а его премия – 942 = 8836 тыс. у. д. ед.
Премия среднего брата равна:
8836 - 3360 = 5476 тыс. у. д. ед,
а младшего брата –
5476 - 3360 = 2116 тыс. у. д. ед.
Соответственно их доли составляют:
39. Обозначим общее количество отечественных и иностранных фирм через х (при этом х должен быть целым, положительным и четным числом). Тогда каждая фирма должна израсходовать
При этом х может быть 2, 4, 6...
С учетом того, что конструкция А стоит 1 тыс. у. д. ед., конструкция Б –
а конструкция В –будем рассуждать так:х = 2 отпадает, так как речь идет о ряде как отечественных, так и иностранных фирм;
х = 4 также не проходит, так как при этом каждая фирма способна тратить тыс. у. д. ед. и не может на эти деньги купить целое число конструкций всех видов;
при х = 6 расходы каждой фирмы составили
На эти деньги можно купить по одной конструкции вида А, по одной конструкции вида Б и по одной – вида В:Это и будет ответом на первый вопрос.
Общее количество фирм, участвующих в покупке, равно 6 (3 отечественные и 3 иностранные).
40. Обозначая момент проверки постов охраны через х1 можно математически записать условие задачи так:
Решая это уравнение, получим:
41. Вероятность получения счастливого билета (Р) может быть определена по следующей формуле из теории вероятностей:
Этот расчет можно проверить, собрав достаточное количество (порядка тысячи) любых билетов с шестизначными номерами и сосчитав, сколько счастливых приходится в среднем на сотню. Должно получиться 5–6 билетов.
42. 1) Обозначим через О, М и Д возраст отца, матери и дочери в момент заключения страхового договора. При этом условие задачи математически запишется так:
в момент заключения договора,
в момент заключения договора,
в момент выплаты страховой премии (через М лет).
Из (2) следует, что О = 12Д.
Подставляя значение О в (3), получим:
Подставляя значение О и М в (1), получим: 12Д + 10Д + Д = 46, откуда Д - 2 года, О = 12Д = 24 года, М = 10Д = 20 лет.
2) Страховая премия должна быть выплачена через М = 20 лет после заключения договора.
43. Обозначим через х первоначальное количество работников в каждом малом предприятии, а через у – первоначальное количество этих предприятий. Тогда количество предприятий после первой реорганизации будет у -10, а количество работников в каждом из них х + 1. После второй реорганизации получим соответственно у – 10 - 15 = у - 25 предприятий и х+ 1 + 2 = х + 3 работника в каждом.
При данном условии задачи можно записать так: