Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 550
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 49 50 51 52 53 54 55 56 57 ... 70 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _343.jpg

Уравнение (38.36) дает нам соот­ношение между изгибающим момен­том

Фейнмановские лекции по физике. 7. Физика сплошных сред - _344.jpg
и кривизной балки 1/R. «Жесткость» балки пропорциональна Y и моменту инерции I. Другими словами, если вы хотите какую-то балку, скажем из алюминия, сделать как можно жестче, то вы должны как можно больше вещества поме­стить как можно дальше от оси, относительно которой берется момент инерции. Но этого нельзя доводить до предела, ибо тогда балка не будет искривляться так, как мы предположили: она согнется или скрутится и снова станет слабее. Вот почему каркасные балки делают в форме буквы I или Н (фиг. 38.13).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _345.jpg

Фиг. 38.13. Двутавровая балка.

В качестве примера применения нашего уравнения (38.36) для балки вычислим отклонение консольной балки под дейст­вием сосредоточенной силы W, действующей на ее свободный конец (фиг. 38.14).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _346.jpg

Фиг. 38.14. Консольная балка с нагрузкой на конце.

(Консольная балка закреплена одним концом, который вмурован в стенку.) Какая же тогда будет форма балки? Обозначим отклонение на расстоянии х от зак­репленного конца через z; мы хотим найти z(x). Будем вычис­лять только малые отклонения. Как вы знаете из курса мате­матики, кривизна 1/R любой кривой z(x) задается выражением

Фейнмановские лекции по физике. 7. Физика сплошных сред - _347.jpg

Нас интересуют только малые изгибы (обычная вещь в ин­женерных конструкциях), поэтому квадратом производной (dz/dx)2можно пренебречь по сравнению с единицей и считать

Фейнмановские лекции по физике. 7. Физика сплошных сред - _348.jpg

Нам нужно еще знать изгибающий момент

Фейнмановские лекции по физике. 7. Физика сплошных сред - _349.jpg
. Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен

Фейнмановские лекции по физике. 7. Физика сплошных сред - _350.jpg

ибо это и есть момент сил относительно точки х, с которым действует груз W, т. е. груз, который должен поддерживать балку. Получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _351.jpg

или

Фейнмановские лекции по физике. 7. Физика сплошных сред - _352.jpg

Это уравнение можно проинтегрировать без всяких фокусов и получить

Фейнмановские лекции по физике. 7. Физика сплошных сред - _353.jpg

воспользовавшись предварительно нашим предположением, что z(0)=0 и что dz/dx в точке x=0 тоже равно нулю. Это и есть граничные условия. А отклонение конца будет

Фейнмановские лекции по физике. 7. Физика сплошных сред - _354.jpg

т, е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резин­ку и вы сами убедитесь в этом. Если первоначально попереч­ное сечение было прямоуголь­ным, то, согнув резинку, вы уви­дите, как она выпирает у основания (фиг. 38.15).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _355.jpg

Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).

Это получается потому, что, согласно отноше­нию Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки те оно близко к этому числу.

§ 5. Продольный изгиб

Теперь воспользуемся нашей теорией, чтобы понять, что про­исходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _356.jpg

Фиг. 38.16. Продольно изогну­тая балка.

Здесь стержень, обычно прямой, удерживается в согнутом виде двумя проти­воположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.

Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент

Фейнмановские лекции по физике. 7. Физика сплошных сред - _357.jpg
в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _358.jpg

Воспользовавшись выражением для момента (38.36), имеем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _359.jpg

При малых отклонениях можно считать 1/R=-d2y/dx2(от­рицательный знак выбран потому, что кривизна направлена вниз). Отсюда

Фейнмановские лекции по физике. 7. Физика сплошных сред - _360.jpg

т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого про­дольно изогнутого стержня представляет синусоиду. «Длина волны» l. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна уд­военной длине неизогнутого стержня. Таким образом, получается кривая

Фейнмановские лекции по физике. 7. Физика сплошных сред - _361.jpg

Беря вторую производную, находим

Фейнмановские лекции по физике. 7. Физика сплошных сред - _362.jpg

Сравнивая это с (38.45), видим, что сила равна

Фейнмановские лекции по физике. 7. Физика сплошных сред - _363.jpg

Для малого продольного изгиба сила не зависит от перемеще­ния у!

Физически же получается вот что. Если сила F меньше опре­деляемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину p2YI/L2(часто назы­ваемую «силой Эйлера»), балка будет «гнуться». Если на вто­ром этаже здания разместить такой груз, что нагрузка на под­держивающие колонны превысит силу Эйлера, то здание рух­нет. Другая область, где очень важны продольно изгибающие силы,— это космические ракеты. С одной стороны, ракета дол­жна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная на­грузка и полезная мощность двигателей были как можно больше.

Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение ста­новится большим, сила благодаря члену (dz/dx)2в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изги­бании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y.

Уравнение (38.44) имеет довольно простые геометрические свойства. Решается оно немного сложнее, но зато гораздо интереснее. Вмес­то того чтобы описывать кривую через х и у, можно воспользовать­ся двумя новыми переменными:

1 ... 49 50 51 52 53 54 55 56 57 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название