Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 641
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 45 46 47 48 49 50 51 52 53 ... 70 ВПЕРЕД
Перейти на страницу:

Мы заканчиваем наше изучение электричества и магнетизма. В гл. 1 (вып. 5) мы говорили о великом пути, пройденном со времен, когда древние греки наблюдали странное поведение янтаря и магнитного железняка. Но еще нигде в наших длин­ных и запутанных рассуждениях мы не объяснили, почему, когда мы натираем кусок янтаря, на нем возникает заряд, не объяснили мы и того, почему намагничен природный магнит­ный железняк! Вы можете возразить: «Нам просто не удалось получить правильного знака». Нет, дело обстоит гораздо хуже. Если бы мы все-таки получили правильный знак, по-прежнему остался бы вопрос: почему кусок магнитного железняка в земле оказался намагниченным? Конечно, существует магнитное поле Земли, но откуда взялось это магнитное поле Земли? Вот это­го-то на самом деле никто и не знает, и приходится довольство­ваться только некоторыми правдоподобными догадками. Так что, как видите, наша хваленая современная физика — сплош­ное надувательство: начали мы с магнитного железняка и ян­таря, а закончили тем, что не понимаем достаточно хорошо ни того, ни другого. Зато в процессе изучения мы узнали огромное количество удивительных и очень полезных для практики вещей!

* Вас может удивить, каким образом спины, которые должны быть направлены либо «вверх», либо «вниз», могут также быть направлены «вбок»! Это, конечно, правильно, но мне, право, не хотелось бы останавли­ваться на этом вопросе сейчас. Мы просто встанем на классическую точку зрения, представив себе атомные магнитики в виде магнитных диполей, ко­торые могут быть ориентированы и в боковом направлении. Чтобы понять, как в квантовой механике можно в одно и то же время квантовать как «вверх—вниз», так и «направо — налево», требуется поднакопить больше знаний.

* Вместо В мы записали это уравнение через H=B-M/e0c2, чтобы согласовать со сказанным в предыдущей главе. Если вам больше нравится, можете написать U=±|m|Ba=±|m|(В+l'M/e0с2), где l'=l-1. Это одно и то же.

Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется пере­вод: Ч. Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.— Ред.)

Глава 38

УПРУГОСТЬ

§ 1.Закон Гука

§ 2.Однородная деформация

§ 3. Кручение стержня; волны сдвига

§ 4.Изгибание балки

§ 5.Продольный изгиб

Повторить: гл. 47 (вып. 4) «Звук, волновое уравнение»

§ 1. Закон Гука

Теория упругости занимается поведением таких тел, которые обладают свойством восста­навливать свой размер и форму после снятия деформирующих сил. В какой-то степени этими упругими свойствами обладают все твердые тела. Если бы у нас было время заниматься этим предметом подольше, то нам пришлось бы рассмотреть множество вопросов: поведение напряженных материалов, законы упругости и общая теория упругости, атомный механизм, определяющий упругие свойства, и, наконец, ограничения на законы упругости, когда силы становятся настолько велики, что возникает пластическое течение и разрушение. Детальное рассмотрение всех этих вопросов потребовало бы гораздо больше времени, чем мы распола­гаем, поэтому кое от чего нам придется отка­заться. Например, мы не будем обсуждать воп­росы пластичности и ограничений на законы упругости. (Этого мы коснемся только очень кратко, когда у нас речь пойдет о дислокациях в металлах.) Мы не сможем также обсудить механизм упругости, так что наше исследова­ние не будет обладать той полнотой, к которой мы стремились в предыдущих главах. Основная цель лекции — познакомить вас с некоторыми способами обращения с такими практическими задачами, как, например, задача об изгибании бруска.

Если вы надавите на кусок материала, то материал «поддастся» — он деформируется. При достаточно малых силах относительное переме­щение различных точек материала пропорцио­нально силе. Такое поведение называется уп­ругим. Мы будем говорить только о таком упругом поведении. Сначала мы выпишем фундаментальный закон упругости, а затем применим его к нескольким различным си­туациям.

Предположим, что мы взяли прямоугольный брусок длиной l, шириной w и высотой h (фиг. 38.1).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _293.jpg

Фиг. 38.1. Растяжение бруска под действием однородной нагрузки.

Если мы потянем за его конец с силой F, то его длина увеличится на Dl. Во всех случаях мы будем предполагать, что изменение длины составляет малую долю от первоначальной. На самом деле материалы, подобные стали или дереву, разрушаются еще до того, как изменение длины достигнет нескольких процентов от первоначального значения. Опыты показывают, что для большого числа мате­риалов при достаточно малых удлинениях сила пропорцио­нальна удлинению

F~Dl. (38.1)

Это соотношение известно как закон Гука.

Удлинение бруска Dl зависит и от его длины. Это можно про­демонстрировать следующими рассуждениями. Если мы скре­пим вместе два одинаковых бруска конец к концу, то на каж­дый будет действовать одна и та же сила и каждый из них удли­нится на Dl. Таким образом, удлинение бруска длиной 2l бу­дет в два раза больше удлинения бруска того же поперечного сечения, но длиной l. Чтобы получить величину, полнее харак­теризующую сам материал и менее зависящую от формы образ­ца, будем оперировать отношением Dl/l (удлинение к перво­начальной длине). Это отношение пропорционально силе, но не зависит от l:

F~Dl/l(38.2)

Сила F зависит также от площади сечения бруска. Предпо­ложим, что мы поставили два бруска бок о бок. Тогда для дан­ного удлинения Dl мы должны приложить силу F к каждому бруску, или для комбинации двух брусков требуется вдвое большая сила. При данной величине растяжения сила должна быть пропорциональна площади поперечного сечения бруска А. Чтобы получить закон, в котором коэффициент пропорциональ­ности не зависит от размеров тела, мы для прямоугольного бруска будем писать закон Гука в виде

F=YA(Dl/l) (38.3)

Постоянная Y определяется только свойствами природы ма­териала; ее называют модулем Юнга. (Обычно модуль Юнга обозначается буквой Е, но эту букву мы уже использовали для электрического поля, для энергии и для э. д. с., так что теперь лучше взять другую.)

Силу, действующую на единичной площади, называют на­пряжением, а удлинение участка, отнесенное к его длине, т. е. относительное удлинение называют деформацией. Уравне­ние (38.3) можно переписать следующим образом;

F/A =YXDl/l. (38.4)

Напряжение=(Модуль Юнга)X(Деформация).

При растяжении, подчиняющемуся закону Гука, возникает еще одно осложнение: если брусок материала растягивается в одном направлении, то под прямым углом к растяжению он сжимается. Уменьшение толщины пропорционально самой толщине w и еще отношению Dl/l. Относительное боковое сжатие одинаково как для ширины, так и для его высоты и обычно за­писывается в виде

Фейнмановские лекции по физике. 7. Физика сплошных сред - _294.jpg

где постоянная s характеризует новое свойство материала и называется отношением Пуассона. Это число положительное до знаку, по величине меньше 1/2. (То, что постоянная о в об­щем случае должна быть положительной, «разумно», но ниотку­да не следует, что она должна быть такой.)

Две константы Y и s полностью определяют упругие свой­ства однородного изотропного (т. е. некристаллического) мате­риала. В кристаллическом материале растяжение и сокращение в разных направлениях может быть различным, поэтому и упру­гих постоянных может быть гораздо больше. Временно мы ог­раничим наши обсуждения однородными изотропными материа­лами, свойства которых могут быть описаны постоянными s и Y. Как обычно, существует множество способов описания свойств.

1 ... 45 46 47 48 49 50 51 52 53 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название