Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 641
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 48 49 50 51 52 53 54 55 56 ... 70 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _328.jpg

Полный момент сил Dt, действующий на маленький от­резок стержня между z и Dz, равен разности t(z) и

t(z+Dz),

или

Dt=(дt/дz)Dz.

Дифференцируя уравнение (38.26), получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _329.jpg

Действие этого полного момента должно вызвать угловое ускорение отрезка стержня. Масса его равна

Фейнмановские лекции по физике. 7. Физика сплошных сред - _330.jpg

где r — плотность материала. В гл. 19 (вып. 2) мы нашли, что момент инерции кругового цилиндра равен mr2/2; обо­значая момент инерции нашего отрезка через Dl, получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _331.jpg

Закон Ньютона говорит нам, что момент силы равен произ­ведению момента инерции на угловое ускорение, или

Фейнмановские лекции по физике. 7. Физика сплошных сред - _332.jpg

Собирая теперь все воедино, находим

Фейнмановские лекции по физике. 7. Физика сплошных сред - _333.jpg

или

Фейнмановские лекции по физике. 7. Физика сплошных сред - _334.jpg

Вы, должно быть, уже узнали, что это такое: это одномерное волновое уравнение. Мы получили, что волны кручения распространяются по стержню со скоростью

Фейнмановские лекции по физике. 7. Физика сплошных сред - _335.jpg

Чем плотнее стержень при одной и той же жесткости, тем мед­леннее движется волна, а чем он жестче, тем волна бежит бы­стрее. Скорость ее не зависит от диаметра стержня.

Волны кручения представляют частный случай волн сдвига. Волны сдвига в общем случае — это такие волны, при которых деформация не изменяет объема любой части материала. В вол­нах кручения мы сталкиваемся с особым распределением нап­ряжений сдвига — они распределены по кругу. Но волны при любом распределении напряжений сдвига будут распростра­няться с одной и той же скоростью, которая определяется фор­мулой (38.32). Сейсмологи, например, обнаружили, что такие волны сдвига распространяются и внутри Земли.

В мире упругих явлений возможен и другой сорт волн внут­ри твердого материала. Если вы толкнете что-нибудь, то можете возбудить «продольные» волны, так называемые волны «сжа­тия». Они подобны звуковым волнам в воздухе или в воде, т. е. перемещение вещества в них происходит в ту же сторону, что и распространение волны. (На поверхности упругого тела мо­гут распространяться и другие типы волн, называемые «вол­нами Рэлея». Деформация в них ни продольная, ни поперечная. Однако у нас нет времени говорить о них подробно.)

Раз уж мы коснулись вопроса о волнах, то какова скорость волн чистого сжатия в большом твердом теле, подобном Земле? Я сказал в «большом», ибо скорость звука в массивном теле отлична от скорости, свойственной, скажем, тонкому стерж­ню. Под массивным телом я подразумеваю тело, поперечные раз­меры которого много больше длины волны звука. Поэтому, нажимая на такой объект, можно обнаружить, что он не «раз­дается» в стороны — он может сжиматься только в одном нап­равлении. К счастью, однако, мы уже разобрали специаль­ный случай сжатия «сдавленного» упругого материала, а в гл. 47 (вып. 4) мы познакомились еще со скоростью звука в газе. Рас­суждая так же, как и выше, вы можете убедиться, что скорость звука в твердом теле равна Ц(Y'/r), где Y' — «продольный мо­дуль», т. е. давление, деленное на относительное изменение длины (для случая «сдавленного» стержня). Равно это просто отношению Dl/l к F/A, полученному нами в уравнении (38.20). Таким образом, скорость продольных волн определяется выра­жением

Фейнмановские лекции по физике. 7. Физика сплошных сред - _336.jpg

Поскольку значение s заключено между 0 и 1/2, то модуль сдвига m меньше модуля Юнга Y, a Y', кроме того, больше Y, так что

m<Y<Y'.

Это означает, что продольные волны распространяются быстрее, чем волны сдвига. Один из наиболее точных способов определе­ния упругих постоянных вещества дает измерение плотности материала и скоростей двух сортов волн. Из этой информации можно получить как Y, так и s. Кстати, именно измеряя раз­ность во времени прихода двух сортов волн от землетрясения, сейсмологи только по сигналам, принятым одной станцией, способны установить расстояние до эпицентра.

§ 4. Изгибание балки

Разберем теперь другой практический вопрос — изгибание балки, стержня или бруска. Чему равны силы, необходимые для изгибания балки произвольного поперечного сечения?

Мы определим эти силы для балки круглого сечения, но ответ будет пригоден для балки любой формы. Чтобы сберечь время, мы кое-где упростим дело, так что теория, которую мы разовьем, будет только приближенной. Наши результаты верны лишь при том условии, что радиус изгиба­ния много больше толщины балки.

Представьте, что вы ухватились за оба конца прямой балки и согнули ее в виде кривой, похожей на ту, что изображена на фиг. 38.11.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _337.jpg

Фиг. 38.11. Изогнутая балка.

Что же происходит внутри балки? Раз она искрив­лена, значит, материал на внутренней стороне сгиба сжат, а на внешней стороне растянут. Но имеется какая-то поверхность, более или менее параллельная оси балки, которая и не сжата, и не растянута. Называется она нейтральной поверхностью. По-видимому, эта поверхность проходит где-то «посредине» поперечного сечения. Можно показать (но я не буду этого здесь делать), что для небольшого изгиба простой балки нейтральная поверхность проходит через «центр тяжести» поперечного се­чения. Но это справедливо только для «чистого» сгиба, т. е. когда балка не растягивается и не сжимается как целое.

При чистом сгибе тонкий поперечный отрезок балки возму­щен (фиг. 38.12, а).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _338.jpg

Фиг. 38.12. Маленький отрезок изогнутой балки (а) и поперечное сечение балки (б).

Материал под нейтральной поверхностью испытывает деформацию сжатия, которая пропорциональна рас­стоянию от нейтральной поверхности, а материал над ней ра­стянут тоже пропорционально расстоянию от нейтральной по­верхности. Таким образом, продольное удлинение Dl пропорцио­нально высоте у. Константа пропорциональности равна просто длине l, деленной на радиус кривизны балки (см. фиг. 38.12):

Dl/l=y/R.

Так что напряжение, т. е. сила, действующая на единичную площадь в некоторой маленькой полоске вблизи у, тоже про­порциональна расстоянию от нейтральной поверхности

Фейнмановские лекции по физике. 7. Физика сплошных сред - _339.jpg

Теперь рассмотрим те си­лы, которые привели бы к подобной деформации. Силы, действующие на маленький отрезок, изображенный на фиг. 38.12, показаны на том же рисунке. Если мы возьмем любое поперечное сечение, то действующие на нем силы направлены в одну сторону выше нейтральной поверхно­сти и в другую — ниже ее. Получается пара сил, кото­рая создает «изгибающий мо­мент»

Фейнмановские лекции по физике. 7. Физика сплошных сред - _340.jpg
, под которым мы понимаем момент силы относительно нейтральной линии. Интегрируя произведение силы на расстояние от нейтральной поверхности, можно вычислить полный момент на одной из граней отрезка фиг. 38.12:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _341.jpg

Согласно (38.34), dF=Y(y/R)dA, так что

Фейнмановские лекции по физике. 7. Физика сплошных сред - _342.jpg

Но интеграл от y2dA можно назвать «моментом инерции» гео­метрического поперечного сечения относительно горизонталь­ной оси, проходящей через его «центр масс»; мы будем обоз­начать его через I, т. е.

1 ... 48 49 50 51 52 53 54 55 56 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название