Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 642
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 36 37 38 39 40 41 42 43 44 ... 70 ВПЕРЕД
Перейти на страницу:

§ 6. Спонтанная намагниченность

Обратимся теперь к вопросу, почему в ферромагнитных мате­риалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материа­лов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент mкаждого электрона равен произведению q/2m на g-фактор и момент количества движения J. Для отдель­ного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направ­лении оси z, равна ±h/2, так что компонента m в направлении оси z будет

mz=gh/2m=0,928·10-23 а/м2. (36.28)

В атоме железа вклад в ферромагнетизм фактически дают толь­ко два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)

Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы вы­яснили, что равновесие между силами магнитного поля, стара­ющимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что сред­ний магнитный момент единицы объема в направлении В оказывается равным

Фейнмановские лекции по физике. 7. Физика сплошных сред - _247.jpg

где под Вамы подразумеваем поле, действующее на атом, а под kT — тепловую (больцмановскую) энергию. В теории парамаг­нетизма мы в качестве Ваиспользовали само поле В, пренебре­гая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля Ва, действующе­го на индивидуальный атом, брать среднее поле в железе. Вмес­то этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сло­жить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но по­добно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).

Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула

Фейнмановские лекции по физике. 7. Физика сплошных сред - _248.jpg

похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _249.jpg

Эти два набора уравнений можно считать аналогичными, если мы чисто математически сопоставим

Фейнмановские лекции по физике. 7. Физика сплошных сред - _250.jpg

Это то же самое, что и

Фейнмановские лекции по физике. 7. Физика сплошных сред - _251.jpg

Другими словами, если уравнения ферромагнетизма записать как

Фейнмановские лекции по физике. 7. Физика сплошных сред - _252.jpg

то они будут похожи на уравнения электростатики.

В прошлом это чисто алгебраическое соответствие доста­вило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убеди­лись, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравне­ния и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одина­ковые уравнения имеют одинаковые решения.

Теперь можно воспользоваться нашими предыдущими ре­зультатами о полях внутри полости различной формы в диэлект­риках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _253.jpg

Но поскольку в нашей полости М равна нулю, то мы полу­чаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _254.jpg

С другой стороны, для дискообразной полости, перпендику­лярной М,

Фейнмановские лекции по физике. 7. Физика сплошных сред - _255.jpg

что в нашем случае превращается в

Фейнмановские лекции по физике. 7. Физика сплошных сред - _256.jpg

или в величинах В:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _257.jpg

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

Фейнмановские лекции по физике. 7. Физика сплошных сред - _258.jpg

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.

Конечно, их можно получить и более физически, непосред­ственно используя уравнения Максвелла. Например, уравне­ние (36.34) непосредственно следует из уравнения С·B=0. (Возьмите гауссову поверхность, которая наполовину находит­ся в материале, а наполовину — вне его.) Подобным же обра­зом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полос­ти уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.

При нахождении равновесной намагниченности из уравне­ния (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _259.jpg

В приближении сферической полости коэффициент Я следует взять равным 1/3, но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возь­мем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы под­ставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _260.jpg

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.

Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

Фейнмановские лекции по физике. 7. Физика сплошных сред - _261.jpg

где Мнас — намагниченность насыщения, т. е. Nm, a x — вели­чина mBa/kT. Зависимость М/Мнасот х показана на фиг. 36.13 (кривая а).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _262.jpg

Фиг. 36.13. Графическое реше­ние уравнений (36.37) и (36.38),

Воспользовавшись еще уравнением (36.36) для Ва, можно записать х как функцию от М:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _263.jpg

1 ... 36 37 38 39 40 41 42 43 44 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название