Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 641
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 39 40 41 42 43 44 45 46 47 ... 70 ВПЕРЕД
Перейти на страницу:

Предполагаемый эффект выстраивания мы учитывали добав­лением в выражение для энергии подходящего слагаемого, приговаривая, что если соседние электронные магнитики дают среднюю намагниченность М, то магнитный момент электрона имеет сильную тенденцию смотреть в том же самом направлении, что и средняя намагниченность соседних атомов. Таким обра­зом, для двух возможных ориентации спинов можно написать:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _273.jpg

Когда стало ясно, что квантовая механика может объяснить нам огромные спин-ориентирующие силы, пусть даже с очевид­но неправильным знаком, то было предложено, что ферромаг­нетизм возникает именно за счет этих сил, но что вследствие сложности железа и большого числа участвующих в игре элект­ронов знак энергии электронов получается обратным. Как толь­ко это стало ясно, т. е. примерно с 1927 г., когда была понята квантовая механика, многие исследователи стали делать разные оценки, прикидки, полуподсчеты, стремясь получить тео­ретически величину К. Но все равно наиболее поздние вычисле­ния энергии взаимодействия между двумя электронными спи­нами в железе, предполагавшие прямое взаимодействие между двумя электронами в соседних атомах, дали неправильный знак. Сейчас, описывая это явление, говорят, что за все как-то ответ­ственна сложность ситуации и что есть надежда, что кому-то, кто сумеет проделать вычисления для более сложного случая, удастся получить правильный ответ!

Полагают, что направленный вверх спин одного из электро­нов внутренней оболочки, который ответствен за магнетизм, стремится заставить спины электронов проводимости, витаю­щих вокруг него, повернуться в противоположную сторону. Можно надеяться, что это ему вполне удастся, ибо электроны проводимости движутся в той же самой области, что и «магнит­ные» электроны. А поскольку они движутся то туда, то сюда, то могут передать свой приказ перевернуться «вверх ногами» спинам электронов других атомов; таким образом, «магнитный» электрон заставляет электрон проводимости направить спин в противоположную сторону, а тот в свою очередь заставляет следующий «магнитный» электрон направить свой спин проти­воположно его спину. Это двойное взаимодействие эквивалентно взаимодействию, стремящемуся выстроить два «магнитных» электрона в одном направлении. Иными словами, тенденция соседних спинов быть параллельными есть результат действия промежуточной среды, которая в некотором смысле стремится быть противоположной им обоим. Этот механизм не требует, чтобы все электроны проводимости были повернуты «вверх ногами». Достаточно, чтобы они лишь слегка стремились по­вернуться вниз, и шансы «магнитных» электронов повернуться вверх перевесят. Как полагают те исследователи, которые рабо­тали с этими вещами, это и есть тот механизм, который ответ­ствен за ферромагнетизм. Но должен отметить, что вплоть до сегодняшнего дня никто не может вычислить величину l мате­риала, зная просто, что в периодической системе элементов этот материал стоит, скажем, под номером 26. Короче говоря, мы все еще не можем понять явление до конца.

Теперь же продолжим рассуждения о нашей теории, а потом вернемся снова назад и обсудим некоторые ошибки избранного нами пути. Если магнитный момент какого-то электрона на­правлен вверх, то его энергия частично обусловлена внешним полем, а частично связана с тенденцией спинов быть параллель­ными. Поскольку при параллельных спинах энергия меньше, то эффект получается таким же, как и от «внешнего эффектив­ного поля». Но помните, что обязано это не истинным магнит­ным силам, а более сложному взаимодействию. Во всяком слу­чае, в качестве выражений для энергии двух спиновых состояний «магнитного» электрона мы примем уравнения (37.1). От­носительная вероятность этих двух состояний при температуре Т пропорциональна exp[-энергия/kT], что можно записать как е±х, где х=|m|(H+lM/e0с2)/kT. Если затем мы вычислим среднюю величину магнитного момента, то найдем (как и в предыдущей главе), что она равна

M=N |m|thx. (37.2)

Теперь я могу подсчитать внутреннюю энергию материала. Отметим, что энергия электрона в точности пропорциональна магнитному моменту, так что все равно, вычислять ли средний момент или среднюю энергию. Среднее значение энергии будет при этом

Фейнмановские лекции по физике. 7. Физика сплошных сред - _274.jpg

Но это не совсем верно. Выражение lM/e0c2 представляет взаимодействие всех возможных пар атомов, а мы должны пом­нить, что каждую пару следует учитывать только один раз. (Ког­да мы учитываем энергию одного электрона в поле остальных, а затем энергию второго электрона в поле остальных, то мы еще раз учитываем часть первой энергии.) Поэтому выражение взаи­модействия мы должны разделить на 2 и наша формула для энергии приобретет вид

Фейнмановские лекции по физике. 7. Физика сплошных сред - _275.jpg

В предыдущей главе мы обнаружили одну очень интересную особенность: для каждого материала ниже определенной темпе­ратуры существует такое решение уравнений, при котором маг­нитный момент не равен нулю даже в отсутствие внешнего на­магничивающего поля. Если в уравнении (37.2) мы положим Н=0, то найдем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _276.jpg

где Мнас=N|m| и Tc=|m|lMнас./ke0c2. Решив это уравнение (графи­чески или каким-то другим способом), мы найдем, что отноше­ние М/Мнаскак функция от T/Tcпредставляет кривую, наз­ванную на фиг. 37.1 «квантовая теория».

Фейнмановские лекции по физике. 7. Физика сплошных сред - _277.jpg

Фиг. 37.1. Зависимость спонтанной намагниченности (Н=0) ферромагнитных кристаллов от температуры.

Пунктирная кривая «Кобальт, Никель» — это полученная экспериментально кри­вая для кристаллов этих элементов. Теория и эксперимент находятся в разумном согласии. Там же представлены резуль­таты классической теории, в которой вычисления проводились в предположении, что атомные магнитики могут иметь всевоз­можные ориентации в пространстве.

Можете убедиться, что это предположение приводит к предсказаниям, которые весьма далеки от экспериментальных данных.

Даже квантовая теория недостаточно хорошо описывает наблюдаемое поведение при высоких и низких температурах. Причина этого отклонения заключена в принятом нами доволь­но грубом приближении: мы предполагали, что энергия атома зависит лишь от средней намагниченности соседних с ним ато­мов. Другими словами, каждый атом со спином, направленным вверх, находящийся по соседству с данным атомом, из-за квантовомеханического эффекта выстраивания вносит свой вклад в энергию. А сколько таких атомов? В среднем это из­меряется величиной намагниченности, но это только в сред­нем. Может оказаться, что для какого-то одного атома спины всех его соседей направлены вверх. Тогда его энергия будет выше средней. У другого же спины некоторых соседей направ­лены вверх, а некоторых — вниз, а среднее может быть нулем, и тогда никакого вклада в энергию вообще не будет и т. д. Из-за того что атомы в разных местах имеют различное окружение с различным числом направленных вверх и вниз спинов, нам следовало бы воспользоваться более сложным способом усред­нения. Вместо того чтобы брать один атом, подверженный сред­нему влиянию, нам следовало бы взять каждый атом в его реаль­ной обстановке, подсчитать его энергию, а затем найти среднюю энергию. Но как же все-таки определить, сколько соседей ато­мов направлено вверх, а сколько — вниз? Это как раз и нужно вычислить, но здесь мы сталкиваемся с очень сложной задачей внутренних корреляций,— задачей, которую никому еще не уда­валось решить. Эта животрепещущая и интригующая проблема в течение многих лет волновала умы физиков; по этому вопросу писалось множество статей крупнейшими учеными, но и они не могли найти полного решения.

1 ... 39 40 41 42 43 44 45 46 47 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название