Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 550
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 32 33 34 35 36 37 38 39 40 ... 70 ВПЕРЕД
Перейти на страницу:

j =jпол+jмaг+jnpoв. (36.5)

Разумеется, именно этот ток входит в уравнение Максвелла с ротором В;

Фейнмановские лекции по физике. 7. Физика сплошных сред - _217.jpg

Теперь мы должны связать ток jмaг с величиной вектора на­магниченности М. Чтобы вы представляли, к чему мы стре­мимся, скажу, что должен получиться такой результат:

jмaг=СXM. (36.7)

Если в магнитном материале нам всюду задан вектор намагни­ченности М, то плотность циркуляционного тока определяется ротором М. Посмотрим, можно ли понять, почему так проис­ходит.

Сначала возьмем цилиндрический стержень, равномерно намагниченный параллельно его оси. Мы знаем, что физически такая равномерная намагниченность означает на самом деле однородную повсюду внутри материала плотность атомных циркулирующих токов. Попытаемся представить себе, как вы­глядят эти реальные токи в поперечном сечении стержня. Мы ожидаем увидеть токи, напоминающие изображенные на фиг.36.2.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _218.jpg

Фиг.36.2. Схематическая диаг­рамма циркулирующих атомных токов в поперечном сечении желез­ного стержня, намагниченного в направлении оси z.

Каждый атомный ток течет по кругу, образуя крохотную цепь, причем все циркулирующие токи текут в одном и том же направлении. Каким же тогда будет эффективный ток? В боль­шей части стержня он, конечно, не дает вообще никакого эф­фекта, ибо рядом с каждым током есть другой ток, текущий в противоположном направлении. Если представить себе неболь­шую поверхность, показанную на фиг. 36.2 линией АВ, которая, однако, чуть-чуть толще отдельного атома, то полный ток через такую поверхность должен быть равен нулю. Внутри материала никакого тока нет. Однако обратите внимание, что на поверх­ности материала атомные токи не компенсируются соседними токами, текущими в другом направлении. Поэтому по поверхности все время в одном направлении вокруг стержня течет ток. Теперь вам понятно, почему я утверждал, что равномерно намагниченный стер­жень эквивалентен соленоиду с текущим по нему электрическим током.

Как же эта точка зрения согласуется с выражением (36.7)? Прежде всего намагниченность М внутри материала постоянна, так что все ее производные равны нулю. Это согласуется с на­шей геометрической картиной. Однако М на поверхности на самом деле не постоянна, она постоянна вплоть до поверхности, а затем неожиданно падает до нуля. Таким образом, непосред­ственно на поверхности возникает громадный градиент, который в соответствии с выражением (36.7) даст огромную плотность тока. Предположим, что мы наблюдаем за тем, что происходит вблизи точки С на фиг. 36.2. Если выбрать направления осей х и у так, как это показано на фигуре, то намагниченность М будет направлена по оси z. Выписывая компоненты уравнения (36.7), мы получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _219.jpg

Хотя производная dMz/dy в точке С равна нулю, производная dMz/dx будет большой и положительной. Выражение (36.7) говорит, что в отрицательном направлении оси у течет ток огромной плотности. Это согласуется с нашим представлением о поверхностном токе, текущем вокруг цилиндра.

Теперь мы можем найти плотность тока в более сложном случае, когда намагниченность в материале меняется от точки к точке. Качественно нетрудно понять, что если в двух сосед­них областях намагниченность различная, то полной компен­сации циркулирующих токов не происходит, поэтому полный ток внутри материала не равен нулю. Именно этот эффект мы и хотим получить количественно.

Прежде всего вспомните, что в гл. 14, § 5 (вып. 5), мы вы­яснили, что циркулирующий ток I создает магнитный момент

m=IА, (36.9)

где А— площадь, ограниченная контуром тока (фиг. 36.3).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _220.jpg

Фиг. 36.3. Дипольный момент m кон тура тока равен IA.

Рассмотрим маленький прямо­угольный кубик внутри намаг­ниченного материала (фиг. 36.4).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _221.jpg

Фиг. 36.4. Небольшой намагничен­ный кубик эквивалентен циркули­рующему поверхностному току.

Пусть кубик будет так мал, что намагниченность внутри него можно считать однородной. Если компонента намагниченности этого кубика в направлении оси z равна Мz, то полный эффект будет таким, как будто по вертикальным граням течет поверх­ностный ток. Величину этого тока мы можем найти из ра­венства (36.9). Полный магнитный момент кубика равен про­изведению намагниченности на объем:

m=Mz(abc),

откуда, вспоминая, что площадь равна ас, получаем

I=Мzb.

Другими словами, на каждой из вертикальных поверхностей величина тока на единицу длины по вертикали равна Мz.

Представьте теперь два таких маленьких кубика, располо­женных рядом друг с другом (фиг. 36.5).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _222.jpg

Фиг. 36.5. Если на­магниченность двух соседних кубиков раз­лична, то на их гра­нице течет поверх­ностный ток.

Кубик 2 несколько смещен по отношению к кубику 1, поэтому его вертикальная компонента намагниченности будет немного другой, скажем Mz+DМz. Теперь полный ток на поверхности между этими двумя кубиками будет слагаться из двух частей. По кубику 1 в положительном направлении по оси у течет ток I1, а по кубику 2 в отрицательном направлении течет ток I2. Полный поверхностный ток в положительном направлении оси у будет равен сумме

I=I1-I2=Мzb-(Мz+DМz)b=-DMzb.

Величину DМгможно записать в виде произведения произ­водной от Mzпо х на смещение кубика 2 относительно кубика 1, которое как раз равно а:

DMz=(дMz /дx)а. Тогда ток, текущий между двумя кубиками, будет равен

I=(-дMz/дx)ab.

Чтобы связать ток I со средней объемной плотностью тока j, необходимо понять, что этот ток на самом деле размазан по некоторой области поперечного сечения. Если мы вообразим, что такими маленькими кубиками заполнен весь объем мате­риала, то за такое сечение (перпендикулярное оси х) может быть выбрана боковая грань одного из кубиков. Теперь вы видите, что площадь, связанная с током, как раз равна площади ab одной из фронтальных граней. В результате получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _223.jpg

Наконец-то у нас начинает получаться ротор М.

Но в выражении для jyдолжно быть еще одно слагаемое, связанное с изменением x-компоненты намагниченности с изме­нением z. Этот вклад в j происходит от поверхности между двумя маленькими кубиками, поставленными друг на друга (фиг. 36.6).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _224.jpg

Фиг. 36.6. Два кубика, распо­ложенных один над другим, то­же могут давать вклад в jy.

Воспользовавшись только что проведенными рассуждениями, мы можем показать, что эта поверхность будет давать в величину jy вклад, равный dMx/dz. Только эти поверх­ности и будут давать вклад в y-компоненту тока, так что пол­ная плотность тока в направлении оси у получается равной

1 ... 32 33 34 35 36 37 38 39 40 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название