Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 550
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 33 34 35 36 37 38 39 40 41 ... 70 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _225.jpg

Определяя токи на остальных гранях куба или используя тот факт, что направление оси z было выбрано совершенно произ­вольно, мы можем прийти к заключению, что вектор плотности тока действительно определяется выражением .

j=СXM.

Итак, если вы решили описывать магнитное состояние ве­щества через средний магнитный момент единицы объема М, то оказывается, что циркулирующие атомные токи эквивалент­ны средней плотности тока в веществе, определяемой выраже­нием (36.7). Если же материал обладает вдобавок еще диэлект­рическими свойствами, то в нем может возникнуть и поляри­зационный ток jпол=dP/dt. А если материал к тому же и про­водник, то в нем может течь и ток проводимости jпров. Таким образом, полный ток можно записать как

J = Jпрoв+СXM+дP/дt; (36.10)

§ 2. Поле Н

Теперь можно подставить выражение для тока (36.10) в уравнение Максвелла. Мы получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _226.jpg

Слагаемое с М можно перенести в левую часть:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _227.jpg

Как мы уже отмечали в гл. 32, иногда удобно записывать (Е+Р/e0) как новое векторное поле D/e0. Точно так же удобно (В-М/e0с2) записывать в виде единого векторного поля. Такое поле мы обозначим через Н, т. е.

H=В-M/(e0c2). (36.12)

После этого уравнение (36.11) принимает вид

e0c2СXH=jnpов+дD/дt. (36.13)

Выглядит оно просто, но вся его сложность теперь скрыта в буквах D и Н.

Хочу предостеречь вас. Большинство людей, которые при­меняют систему СИ, пользуются другим определением Н. На­зывая свое поле через Н' (они, конечно, не пишут штриха), они определяют его как

Н'=e0с2В-М. (36.14)

(Кроме того, величину e0с2 они обычно записывают в виде l/m0, так что появляется еще одна постоянная, за которой все время нужно следить!) При таком определении уравнение (36.13) будет выглядеть еще проще:

СXH' = jnpoв+дD/дt. (36.15)

Но трудность здесь заключается в том, что такое определение, во-первых, не согласуется с определением, принятым теми, кто не пользуется системой СИ, и, во-вторых, поля Н' и В изме­ряются в различных единицах. Я думаю, что Н удобнее изме­рять в тех же единицах, что и В, а не в единицах М, как Н'. Но если вы собираетесь стать инженером и проектировать транс­форматоры, магниты и т. п., то будьте внимательны. Вы столк­нетесь со множеством книг, где в качестве определения Н используется уравнение (36.14), а не (36.12), а в других книгах, особенно в справочниках о магнитных материалах, связь между В и Н такая же, как и у нас. Нужно быть внимательным и по­нимать, какое где использовано соглашение.

Одна из примет, указывающих нам на соглашение,— это единицы измерения. Напомним, что в системе СИ величина В, а следовательно, и наше Н измеряются в единицах вб/м2 (1 вб/м2=10 000 гс). Магнитный же момент (т. е. произведение тока на площадь) в той же системе СИ измеряется в единицах а·м2. Тогда намагниченность М имеет размерность а/м. Размерность Н' та же, что и размерность М. Нетрудно видеть, что это согла­суется с уравнением (36.15), поскольку у имеет размерность обратной длины.

Те, кто работает с электромагнитами, привыкли измерять поле Н (определенное как Н') в ампер-витках/метр, имея при этом в виду витки провода в обмотке. Но «виток» ведь фактически величина безразмерная, и она не должна вас смущать. Посколь­ку наше Н равно H'/e0c2, то, если вы пользуетесь системой СИ, Н вб/м) равно произведению 4p·10-7 на Н'(в а/м). Может быть, более удобно помнить, что Н гс) равно 0,0126 H' а/м).

Здесь есть еще одна ужасная вещь. Многие люди, исполь­зующие наше определение Н, решили назвать единицы измере­ния Н и В по-разному! И даже несмотря на одинаковую размер­ность, они называют единицу В гауссом, а единицу Нэрсте­дом (конечно, в честь Гаусса и Эрстеда). Таким образом, во многих книгах вы найдете графики зависимости В в гауссах от Н в эрстедах. На самом деле это одна и та же единица, равная 10-4 единиц СИ. Эту неразбериху в магнитных единицах мы увековечили в табл. 36.1.

Таблица 36.1 · ЕДИНИЦЫ МАГНИТНЫХ ВЕЛИЧИН

Фейнмановские лекции по физике. 7. Физика сплошных сред - _228.jpg

§ 3. Кривая намагничивания

Рассмотрим теперь некоторые простые случаи, когда маг­нитное поле остается постоянным или изменения поля настолько медленны, что можно пренебречь dD/dt по сравнению с jnpoв. В этом случае поля подчиняются уравнениям

СXB=0, (36.16)

СXH=jпров/e0c2, (36.17)

H=B-M/e0c2. (36.18)

Предположим, что у нас есть железный тор с намотанной на него медной проволокой, как это показано на фиг. 36.7, а.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _229.jpg

Фиг. 36.7. Железный тор, обмотанный витками изолированного провода (а), и его поперечное сечение (б). Показаны силовые линии.

Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б) силовые линии должны быть круговыми. Вследствие постоянства потока В его дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б. Из теоремы Стокса мы получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _230.jpg

где интеграл от j берется по поверхности S, ограниченной кон­туром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I, а пос­кольку всего витков N штук, то интеграл будет равен NI. Из симметрии нашей задачи видно, что В одинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Н тоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид

Фейнмановские лекции по физике. 7. Физика сплошных сред - _231.jpg

где l—длина кривой Г. Таким образом,

Фейнмановские лекции по физике. 7. Физика сплошных сред - _232.jpg

Именно из-за того что в задачах подобного типа поле Н прямо пропорционально намагничивающему току, оно иногда назы­вается намагничивающим.

Единственное, что нам теперь требуется,— это уравнение, связывающее Н с В. Однако такого уравнения просто не суще­ствует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между М и В. Намагниченность М зависит от всей предыдущей истории данного образца железа, а не толь­ко от того, каково поле В в данный момент и как оно изменялось раньше.

1 ... 33 34 35 36 37 38 39 40 41 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название