Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 553
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 28 29 30 31 32 33 34 35 36 ... 70 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _194.jpg

Фиг. 35.6. Количество атомов в пучке при w=wp уменьшается.

Зная w , можно найти величину g для данного атома.

Такой резонансный эксперимент с атомными или, как их часто называют, «молекулярными» пучками представляет очень красивый и точный способ измерения магнитных свойств атом­ных объектов. Резонансную частоту wp можно определить с очень большой точностью, по сути дела значительно точнее, нежели мы способны измерить поле В0, необходимое при на­хождении g.

§ 4. Парамагнетизм

Теперь мне бы хотелось описать явление парамагнетизма вещества. Предположим, имеется вещество, в составе которого имеются атомы, обладающие постоянным магнитным моментом, например кристаллы медного купороса. В этих кристаллах содержатся ионы меди, у которых электроны на внутренних оболочках имеют суммарный момент количества движения и магнитный момент, не равные нулю. Таким образом, ионы меди будут источником постоянного магнитного момента молекул купороса. Буквально несколько слов о том, какие атомы имеют постоянный магнитный момент, а какие — нет. Любой атом, у которого число электронов нечетно, подобно натрию, напри­мер, будет иметь магнитный момент. На незаполненной оболочке натрия имеется один электрон. Этот электрон и определяет спин и магнитный момент атома. Однако обычно при образовании соединения этот дополнительный электрон на внешней оболочке спаривается с другим электроном, направление спина которого в точности противоположно, так что все моменты количества движения и магнитные моменты валентных электронов в точности компенсируют друг друга. Вот почему молекулы, вообще го­воря, не обладают магнитным моментом. Конечно, если у вас есть газ атомов натрия, то там такой компенсации не происхо­дит. Точно так же если у вас есть то, что в химии называется «свободным радикалом», т. е. объект с нечетным числом валент­ных электронов, то связи оказываются неполностью насыщен­ными и появляется ненулевой момент количества движения.

У подавляющего большинства материалов полный магнитный момент появляется только тогда, когда там присутствуют атомы с незаполненной внутренней электронной оболочкой. Благода­ря этому они могут иметь суммарный момент количества дви­жения и магнитный момент. Такие атомы принадлежат к «пере­ходным элементам» периодической таблицы Менделеева, на­пример: хром, марганец, железо, никель, кобальт, палладий и платина — элементы как раз такого сорта. Кроме того, все редкоземельные элементы имеют незаполненную внутреннюю оболочку, а следовательно, и постоянные магнитные моменты. Правда, встречаются еще странные вещества (к числу их отно­сятся жидкий кислород и окись азота), которые, оказывается, тоже обладают магнитным моментом, но объяснить причины этих странностей я предоставляю химикам.

Предположим теперь, что у нас есть ящик, наполненный молекулами или атомами с постоянным магнитным моментом, скажем газ, жидкость или кристалл. Нам хочется знать, что получится, если мы поместим его во внешнее магнитное поле. В отсутствие магнитного поля атомы сбиваются тепловым движением и их магнитные моменты распределяются по всем направлениям. Но когда действует магнитное поле, оно выстра­ивает эти маленькие магнитики, так что магнитных моментов, направленных по полю, становится больше, чем направленных против него. Материал «намагничивается».

Намагниченность М материала мы определяем как полный магнитный момент единицы объема, под которым мы понимаем векторную сумму всех атомных магнитных моментов единицы объема. Если среднее число атомов в единице объема равно N, а их средний момент равен <m>cp, то М можно записать как про­изведение N на средний магнитный момент:

м = n<m>cp. (35.8)

Это определение М аналогично определению электрической поляризации Р, данному в гл. 10 (вып. 5).

Классическая теория парамагнетизма, как вы уже убедились в гл. 10 (вып. 5), в точности аналогична теории диэлектрической проницаемости. Предполагается, что магнитный момент m каждого из атомов всегда имеет одну и ту же величину, но может быть направлен в любую сторону. Магнитная энергия в поле В равна -m·B=-mBcosq, где q — угол между моментом и полем. Согласно статистической физике, относительная вероят­ность угла равна e-энергия/kT так что угол 0° более вероятен, чем угол p. Следуя в точности по пути, проделанному нами в гл. 11, § 3 (вып. 5), мы обнаружим, что для слабых магнитных полей М направлена параллельно В и имеет величину

Фейнмановские лекции по физике. 7. Физика сплошных сред - _195.jpg

[См. выражение (11.20), вып. 5.] Эта приближенная формула верна, только когда отношение mB/kT много меньше единицы.

Мы нашли, что намагниченность, т. е. магнитный момент единицы объема, пропорциональна магнитному полю. Это яв­ление и называется парамагнетизмом. Вы увидите, что эффект сильнее проявляется при низких температурах и слабее при высоких. При помещении вещества в магнитное поле возникаю­щий в нем магнитный момент в случае слабых полей пропор­ционален величине поля. Отношение М к В (для слабых полей) называется магнитной восприимчивостью.

Рассмотрим теперь парамагнетизм с точки зрения квантовой механики. Обратимся сначала к атомам со спином 1/2. Если в отсутствие магнитного поля атомы обладают вполне определенной энергией, то в магнитном поле энергия изменится; возможны два значения энергии для разных значений Jz. Для Jz=+h/2

магнитное поле изменяет энергию на величину

Фейнмановские лекции по физике. 7. Физика сплошных сред - _196.jpg

(Для атомов сдвиг энергии DU положителен, ибо заряд элек­трона отрицателен.) Для Jг =-h/2 энергия изменяется на величину

Фейнмановские лекции по физике. 7. Физика сплошных сред - _197.jpg

Для сокращения записи обозначим

Фейнмановские лекции по физике. 7. Физика сплошных сред - _198.jpg

тогда

DU = ±m0В. (35.13)

Совершенно ясен и смысл m0; — m0равно z-компоненте маг­нитного момента для спина, направленного вверх, а + m0 равно z-компоненте магнитного момента в случае спина, на­правленного вниз.

Статистическая механика говорит нам, что вероятность нахождения атома в каком-то состоянии пропорциональна

g-(энергия состояния)/kT.

В отсутствие магнитного поля энергия обоих состояний одна и та же, поэтому в случае равновесия в магнитном поле ве­роятности пропорциональны

е-DU/kT, (35.14)

Число же атомов в единице объема со спином, направленным вверх, равно

Фейнмановские лекции по физике. 7. Физика сплошных сред - _199.jpg

а со спином, направленным вниз,

Фейнмановские лекции по физике. 7. Физика сплошных сред - _200.jpg

Постоянная а должна определяться из условия

Nвверх+Nвниз=N (35.17)

т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем

Фейнмановские лекции по физике. 7. Физика сплошных сред - _201.jpg

Однако нас интересует средний магнитный момент в на­правлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -m0, а со спином, направленным вниз, + m0, так что средний момент будет

Фейнмановские лекции по физике. 7. Физика сплошных сред - _202.jpg

Тогда М — магнитный момент единицы объема — будет равен N<m>ср. Воспользовавшись выражениями (35.15)—(35.17), по­лучим

1 ... 28 29 30 31 32 33 34 35 36 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название