Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Интенсивность рассеиваемого света увеличивается в N2 раз. Если бы атомы находились далеко друг от друга, мы получили бы увеличение в N раз по сравнению со случаем отдельного атома, а здесь возникает N2 раз! Иначе говоря, рассеяние капельками воды (по N молекул в каждой) в N раз больше рассеяния тех же атомов по отдельности. Таким образом, чем больше вода конденсируется, тем больше рассеяние. Может ли рассеяние расти до бесконечности? Нет, конечно! На каком же этапе наши рассуждения станут неверными? Ответ: когда водяная капля увеличится настолько, что размеры ее окажутся порядка длины волны, колебания атомов будут происходить с разными фазами, потому что расстояние между ними станет слишком большим. Таким образом, с увеличением размера капель рассеяние растет до тех пор, пока капли не станут порядка длины волны, а затем с ростом капель рассеяние увеличивается гораздо медленнее. Кроме того, голубой свет в рассеянной волне начинает исчезать, потому что для коротких волн предел роста рассеяния наступает раньше (у менее крупных капель), чем для длинных волн. Хотя каждый атом рассеивает короткие волны сильнее, чем длинные, капли с размерами больше длины волны интенсивнее рассеивают свет вблизи красного конца спектра, и с ростом капель цвет рассеянного излучения меняется с голубого на красный (становится более красным).
Это явление можно наглядно продемонстрировать. Нужно взять очень маленькие частички вещества, которые затем постепенно будут расти. Для этого воспользуемся раствором гипосульфита натрия в серной кислоте, в котором осаждаются крохотные зернышки серы. Когда сера начинает осаждаться, зернышки еще очень малы и рассеянный свет имеет синеватый оттенок. С ростом числа и величины частиц в осадке свет сначала становится более интенсивным, а затем приобретает беловатый оттенок. Кроме того, проходящие лучи теряют синюю составляющую. Именно поэтому закат бывает красным; солнечные лучи, прошедшие к нам через толщу атмосферы, успели рассеять голубой свет и приобрели оранжевую окраску.
Наконец, при рассеянии возникает еще одно важное явление, которое, по существу, относится к поляризации — теме следующей главы. Однако оно так интересно, что имеет смысл сказать о нем сейчас. Оказывается, что электрическое поле рассеянного света колеблется преимущественно в одном определенном направлении. Пусть электрическое поле в падающей волне колеблется в каком-то направлении, тогда осциллятор будет совершать свои вынужденные колебания в том же направлении. Если теперь мы будем смотреть под прямым углом к падающему лучу, то увидим поляризованный свет, т. е. свет, в котором электрическое поле колеблется только в одном направлении. Вообще говоря, атомы могут осциллировать в любом направлении, лежащем в плоскости, перпендикулярной падающему лучу, но, когда они движутся прямо к нам или от нас, мы их не видим. Таким образом, хотя электрическое поле в падающем луче осциллирует во всевозможных направлениях (в этом случае говорят о неполяризованном свете), свет, рассеивающийся под углом 90°, содержит колебания только в одном направлении (фиг. 32.3)!
Фиг. 32.3. Возникновение поляризации у рассеянного луча, направленного под прямым углом к падающему лучу.
Есть такое вещество, называемое поляроидом, через которое проходит только волна с электрическим полем, параллельным некоторой оси. С помощью поляроида можно заметить поляризацию и, в частности, показать, что свет, рассеянный нашим раствором гипосульфита, действительно сильно поляризован.
*Выпуск 2