Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

(31.13)
Решение этого уравнения, найденное нами раньше, выглядит следующим образом:
(31.15)

откуда
(31.16)
Мы нашли то, что хотели,— движение электронов в пластинке. Оно одинаково для всех электронов, и только среднее положение («нуль» движения) у каждого электрона свое.

Теперь мы в состоянии определить поле Еа , создаваемое атомами в точке Р, поскольку поле заряженной плоскости было найдено еще раньше (в конце гл. 30). Обращаясь к уравнению (30.19), мы видим, что поле Еа в точке Р есть скорость заряда, запаздывающая по времени на величину z/c, умноженная на отрицательную константу. Дифференцируя х из (31.16), получаем скорость и, введя запаздывание [или же просто подставляя х0 из (31.15) в (30.18)], приходим к формуле
(31.17)
Как и следовало ожидать, вынужденное колебание электронов привело к новой волне, распространяющейся вправо (на это указывает множитель ехр[iw(t-z/c)]); амплитуда волны пропорциональна числу атомов на единице площади пластинки (множитель h), а также амплитуде поля источника (Е0). Кроме того, возникают и другие величины, зависящие от свойств атомов (qe , m , w0).
Самый важный момент, однако, заключается в том, что формула (31.17) для Еa очень похожа на выражение Еа в (31.8), полученное нами с помощью введения запаздывания в среде с показателем преломления n. Оба выражения совпадают, если положить

(31.18)
Заметьте, что обе стороны этого равенства пропорциональны Dz, поскольку h — число атомов на единицу площади — равно NDz, где N — число атомов на единицу объема пластинки. Подставляя NDz вместо hи сокращая на Dz, получаем наш основной результат — формулу для показателя преломления, выраженную через константы, зависящие от свойств атомов, и частоту света:

(31.19)
Эта формула «объясняет» показатель преломления, к чему мы и стремились.
§ 3. Дисперсия
Полученный нами результат очень интересен. Он дает не только показатель преломления, выраженный через атомные постоянные, но указывает, как меняется показатель преломления с частотой света w. С помощью простого утверждения «свет движется с меньшей скоростью в прозрачной среде» мы никогда бы не смогли прийти к этому важному свойству. Нужно, конечно, еще знать число атомов в единице объема и собственную частоту атомов w0. Мы еще не умеем определять эти величины, поскольку они разные для разных материалов, а общую теорию по данному вопросу мы сейчас изложить не можем. Общая теория свойств различных веществ — их собственных частот и
т. п.— формулируется на основе квантовой механики. Кроме того, свойства различных материалов и величина показателя преломления сильно меняются от материала к материалу, и поэтому вряд ли можно надеяться, что вообще удастся получить общую формулу, пригодную для всех веществ.
Тем не менее попробуем применить нашу формулу к разным средам. Прежде всего, для большинства газов (например, для воздуха, большей части бесцветных газов, водорода, гелия и т. д.) собственные частоты колебаний электронов соответствуют ультрафиолетовому свету. Эти частоты много больше частот видимого света, т. е. w0 много больше w, и в первом приближении можно пренебречь w2 по сравнению с w02. Тогда показатель преломления получается почти постоянным. Итак, для газов показатель преломления можно считать константой. Этот вывод справедлив также и для большинства других прозрачных сред, например для стекла. Взглянув более внимательно на наше выражение, можно заметить, что при увеличении со знаменатель уменьшается, а, следовательно, показатель преломления растет. Таким образом, n медленно увеличивается с ростом частоты. Для синего света показатель преломления больше, чем для красного. Именно поэтому синие лучи сильнее отклоняются призмой, чем красные.
Сам факт зависимости показателя преломления от частоты называется дисперсией, так как именно из-за дисперсии свет «диспергирует», раскладывается призмой в спектр. Формула, выражающая показатель преломления как функцию частоты, называется формулой дисперсии. Итак, мы нашли дисперсионную формулу. (За последние несколько лет «дисперсионные формулы» стали использоваться в теории элементарных частиц.)
Наша дисперсионная формула предсказывает ряд новых интересных эффектов. Если частота w0 лежит в области видимого света или если измерять показатель преломления вещества, например стекла, для ультрафиолетовых лучей (где w близко к w0), то знаменатель стремится к нулю, а показатель преломления становится очень большим. Пусть, далее, w больше w0. Такой случай возникает, например, если облучать вещества типа стекла рентгеновскими лучами. Кроме того, многие вещества, непрозрачные для обычного света (скажем, уголь), прозрачны для рентгеновских лучей, поэтому можно говорить о показателе преломления этих веществ для рентгеновских лучей. Собственные частоты атомов углерода гораздо меньше частоты рентгеновских лучей. Показатель преломления в этом случае дается нашей дисперсионной формулой, если положить w0=0 (т. е. мы пренебрегаем w02 по сравнению с w2).
Аналогичный результат получается при облучении газа свободных электронов радиоволнами (или светом). В верхних слоях атмосферы ультрафиолетовое излучение Солнца выбивает электроны из атомов, в результате чего образуется газ свободных электронов. Для свободных электронов w0=0 (упругой возвращающей силы нет). Полагая в нашей дисперсионной формуле w0=0, получаем разумную формулу для показателя преломления радиоволн в стратосфере, где N теперь означает плотность свободных электронов (число на единицу объема) в стратосфере. Но, как видно из формулы, при облучении вещества рентгеновскими лучами или электронного газа радиоволнами член (ш02-ш2) становится отрицательным, откуда следует, что n меньше единицы. Это значит, что эффективная скорость электромагнитных волн в веществе больше c! Может ли так быть?
Может. Хотя мы и говорили, что сигналы не могут распространяться быстрее скорости света, тем не менее показатель преломления при некоторой частоте может быть как больше, так и меньше единицы. Это просто означает, что сдвиг фазы за счет рассеяния света либо положителен, либо отрицателен. Кроме того, можно показать, что скорость сигнала определяется показателем преломления не при одном значении частоты, а при многих частотах. Показатель преломления указывает на скорость движения гребня волны. Но гребень волны не составляет еще сигнала. Чистая волна без всяких модуляций, т. е. состоящая из бесконечно повторяющихся правильных осцилляции, не имеет «начала», и ее нельзя использовать для посылки сигналов времени. Чтобы послать сигнал, волну нужно видоизменить, сделать на ней отметку, т. е. сделать ее кое-где потолще или потоньше. Тогда волна будет содержать не одну частоту, а целый ряд частот, и можно показать, что скорость распространения сигнала зависит не от одного значения показателя преломления, а от характера изменения показателя с частотой. Мы пока отложим этот вопрос. В гл. 48 (вып. 4) мы вычислим скорость распространения сигналов в стекле и убедимся, что она не превышает скорости света, хотя гребни волны (понятия чисто математические) движутся быстрее скорости света.
