-->

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Название: Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Дата добавления: 15 январь 2020
Количество просмотров: 261
Читать онлайн

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _154.jpg

§ 4. Независимые источники

Прежде чем перейти ко второй теме этой главы — рассея­нию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S1 и S2 с амплитудами поля a1 и A2 . Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами j1 и j2 (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки на­блюдения).

Наблюдаемая интенсивность излучения получается сложе­нием двух комплексных векторов с модулями a1 и A2 и фазами j1 и j2 (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _155.jpg

Если бы не было перекрестного члена 2A1A2cos(j1-j2), пол­ная энергия в данном направлении была бы равна сумме энер­гий A12+A22; излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источ­ников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет ин­терференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.

Приведем несколько примеров. Пусть два источника нахо­дятся друг от друга на расстоянии 7 000 000 000 длин волн, что, в общем, вполне осуществимо. Тогда в некотором фиксиро­ванном направлении разность фаз принимает вполне определен­ное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в ма­ленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.

Итак, усреднение по области, в которой фаза быстро меня­ется от точки к точке, обращает интерференционный член в нуль.

Другой пример. Предположим, что два источника колеб­лются и излучают радиоволны независимо друг от друга, т. е. они представляют собой не один осциллятор, питающийся от двух проводов (благодаря чему разность фаз остается постоян­ной), а именно два независимых источника. И пусть источники не настроены точно на одну и ту же частоту (равенства частот очень трудно достигнуть, если не соединять источники в одной цепи). Именно при этих условиях мы и будем называть источ­ники независимыми. Естественно, что из-за сдвига по частоте фазы источников будут различаться, даже если вначале они и совпадали: одна из фаз начнет опережать другую и очень скоро источники окажутся в противофазе, а при дальнейшем опере­жении фазы снова сравняются и т. д. Разность фаз источников будет, таким образом, дрейфовать со временем, но при измере­ниях в течение больших промежутков времени приборы не смо­гут уследить за ними, так как подъемы и спады интенсивности, похожие на «биения» звука, происходят слишком быстро. Мы должны усреднить по промежутку времени наблюдения, но при этом интерференционный член снова выпадает.

Другими словами, при усреднении по разности фаз интерфе­ренционный член обращается в нуль!

Имеется много книг по физике, в которых утверждается, что два различных источника света никогда не интерферируют. Это утверждение не отражает физического закона, а просто характеризует ту чувствительность экспериментальной техники, кото­рая существовала к моменту написания книги. В источнике же света происходит следующее: сначала излучает один атом, затем другой и т. д. Как мы показали выше, атомы излучают последо­вательность волн за время около 10-8 сек; через 10-8 сек какой-то атом высвечивается, его место занимает другой, затем третий и т. д. Поэтому фаза может оставаться постоянной примерно только в течение 10-8 сек. При усреднении за промежутки вре­мени, много большие 10-8 сек, интерференционный член от двух источников выпадает, так как фазы источников за это время много раз изменятся. Световые ячейки Керра позволяют реги­стрировать свет с очень большой скоростью, и с их помощью удалось показать, что интерференционный член меняется за время порядка 10-8 сек. Но большинство приборов не может регистрировать свет в столь малые интервалы времени и, есте­ственно, не обнаруживает интерференции. Для глаза время усреднения — порядка 1/10 сек, поэтому увидеть интерферен­цию обычных источников совершенно невозможно.

Недавно удалось создать источники света, в которых атомы излучают одновременно, и поэтому можно обойти эффект усред­нения. Принцип устройства подобных источников весьма сло­жен, его можно понять, только зная законы квантовой меха­ники. Называются эти источники лазерами. Частота интерфе­ренции испущенного лазером света, т. е. время, в течение кото­рого фаза остается постоянной, много больше 10-8 сек. Оно может быть равно сотой, десятой доле секунды и даже целой секунде; с помощью обычных световых ячеек можно определить частоту интерференции между двумя лазерами. Легко также заметить биения при сложении света от двух лазеров. Вне вся­кого сомнения, скоро станет возможно получать столь медлен­ные биения, что, направив на стенку свет от двух лазеров, можно будет увидеть их невооруженным глазом в виде периодических ослаблений и увеличений яркости пятна!

Еще один пример погашения интерференции представляет собой сложение света не двух, а многих источников. В этом слу­чае A2R равно квадрату суммы большого числа амплитуд (комп­лексных чисел), т. е. сумме квадратов плюс перекрестные члены от каждой пары. При определенных условиях перекрестные члены могут погаситься и интерференция исчезнет. Например, когда источники распределены в пространстве случайным обра­зом, тогда разность фаз A2и А3хотя и постоянна, но значитель­но отличается от разности фаз A1 и А2и т. д. В результате полу­чается много косинусов — одни из них положительны, другие отрицательны, а в сумме они почти целиком сокращаются.

Вот почему во многих случаях мы не замечаем эффекта интер­ференции, а полная интенсивность оказывается равной сумме интенсивностей всех источников.

§ 5. Рассеяние света

Приведенные выше примеры помогут нам понять одно явле­ние, которое возникает в воздухе в результате неупорядочен­ного расположения атомов. В главе о показателе преломления мы говорили, что падающий свет вызывает излучение атомов. Электрическое поле падающего пучка раскачивает электроны вверх и вниз, и они, двигаясь с ускорением, начинают излу­чать. Это рассеянное излучение образует пучок света, движу­щийся в том же направлении, что и падающий луч, но отличаю­щийся от него по фазе, благодаря чему и возникает показатель преломления.

Но что можно сказать об интенсивности рассеянного света в других направлениях? Если атомы очень правильно череду­ются, образуя красивый геометрический узор, интенсивность во всех остальных направлениях равна нулю, потому что ре­зультат сложения множества векторов с меняющимися фазами сводится к нулю. Но если расположение атомов беспорядочное, интенсивность в любом направлении, как мы уже говорили, равна сумме интенсивностей от каждого атома в отдельности. Более того, атомы газа постоянно движутся, и разность фаз двух атомов, принимающая определенное значение в некото­рый момент времени, в следующий момент уже изменится, поэтому при усреднении по времени исчезает каждый пере­крестный член в отдельности. Следовательно, для определе­ния интенсивности света, рассеянного газом, можно взять рассеяние на одном атоме и умножить интенсивность на чи­сло атомов.

Перейти на страницу:
Комментариев (0)
название