Фейнмановские лекции по физике. 5. Электричество и магнетизм

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 5. Электричество и магнетизм, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 5. Электричество и магнетизм
Название: Фейнмановские лекции по физике. 5. Электричество и магнетизм
Дата добавления: 15 январь 2020
Количество просмотров: 357
Читать онлайн

Фейнмановские лекции по физике. 5. Электричество и магнетизм читать книгу онлайн

Фейнмановские лекции по физике. 5. Электричество и магнетизм - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _177.jpg

(4.24)

(4.25)

Не забывайте, что потенциал j имеет физический смысл: это потенциальная энергия, которую имел бы единичный заряд, если его перенести в указанную точку пространства из неко­торой отправной точки.

§4. E = -Сj

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _178.jpg

С какой стати нас заинтересовал потенциал j? Силы, дейст­вующие на заряды, даются величиной Е — электрическим полем. Вся соль в том, что Е из j очень легко получить, не труд­нее, чем вычислить производную. Рассмотрим две точки с одина­ковыми у и z, но с разными х: у одной х, у другой x+Dx;; поинте­ресуемся, какую работу надо совершить, чтобы перенести еди­ничный заряд из одной точки в другую. Путь переноса — го­ризонтальная линия от хдо х+Dх.Работа равна разности по­тенциалов в двух точках

Но работа против действия силы на том же отрезке равна

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _179.jpg

Мы видим, что

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _180.jpg

(4.26)

Равным образом, Еу=-дj/ду, Ez=-dj/dz; все это в обозна­чениях векторного анализа можно подытожить так:

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _181.jpg

4.27)

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _182.jpg

Это дифференциальная форма уравнения (4.22). Любую задачу, в которой заряды заданы, можно решить, вычислив по (4.24) или (4.25) потенциал и рассчитав по (4.27) поле. Уравнение (4.27) согласуется также с тем, что получается в векторном ана­лизе: с тем, что для любого скалярного поля

(4.28)

Согласно уравнению (4.25), скалярный потенциал j пред­ставляется трехмерным интегралом, подобным тому, кото­рый мы писали для Е. Есть ли какая выгода в том, что вместо Е вычисляется j? Да. Для вычисления j нужно взять один ин­теграл, а для вычисления Е—три (ведь это вектор). Кроме того, обычно 1/r интегрировать легче, чем x/r3. Во многих прак­тических случаях оказывается, что для получения электриче­ского поля легче сперва подсчитать j, а после взять градиент, чем вычислять три интеграла для Е. Это просто вопрос удобства.

Но потенциал j имеет и глубокий физический смысл. Мы показали, что Е закона Кулона получается из Е=-gradj, где j дается уравнением (4.22). Но если Е—это градиент скаляр­ного поля, то, как известно из векторного исчисления, ротор Е должен обратиться в нуль:

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _183.jpg

(4.29)

Но это и есть наше второе основное уравнение электростатики — уравнение (4.6). Таким образом, мы показали, что закон Кулона дает поле Е, удовлетворяющее этому условию. Так что до сих пор все в порядке.

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _184.jpg

На самом деле то, что СXЕ равно нулю, было доказано еще до того, как мы определили потенциал. Мы показали, что ра­бота обхода по замкнутому пути равна нулю, т. е. по любому пути.

Мы видели в гл. 3, что в таком поле СXЕ должно быть всюду равно нулю. Электрическое поле электро­статики — это поле без роторов.

Вы можете потренироваться в векторном исчислении, дока­зав равенство нулю вектора СXЕ другим способом, т. е. вычис­лив компоненты вектора СXЕ для поля точечного заряда по формулам (4.11). Если получится нуль, то принцип наложения обеспечит нам обращение СXЕ в нуль для любого распределе­ния зарядов.

Следует подчеркнуть важный факт. Для любой радиальной силы выполняемая работа не зависит от пути и существует по­тенциал. Если вы вдумаетесь в это, то увидите, что все наши доказательства того, что интеграл работы не зависит от пути, сами определялись только тем, что сила от отдельного заряда была радиальна и сферически симметрична. То, что зависимость силы от расстояния имела вид 1/r2, не имело никакого значе­ния, при любой зависимости от rполучилось бы то же самое. Существование потенциала и обращение в нуль ротора Е выте­кают на самом деле только из симметрии и направленности электростатических сил. По этой причине уравнение (4.28) или (4.29) может содержать в себе только часть законов элект­ричества.

§ 5. Поток поля Е

Теперь мы хотим вывести уравнение, которое непосредст­венно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обратно пропорционально квадрату расстоя­ния, потому что «именно так, мол, все распространяется». Возьмите световой источник, из которого льется поток света; количество света, проходящее через основание конуса с верши­ной в источнике, одно и то же независимо от того, насколько основание удалено от вершины. Это с необходимостью следует из сохранения световой энергии. Количество света на еди­ницу площади — интенсивность — должно быть обратно про­порционально площади, вырезанной конусом, т. е. квадрату расстояния от источника. Ясно, что по той же причине и элект­рическое поле должно изменяться обратно квадрату расстояния!

Но здесь ведь нет ничего похожего на «ту же причину». Ведь никто не может сказать, что электрическое поле есть мера чего-то такого, что похоже на свет и что поэтому должно сохра­няться. Если бы у нас была такая «модель» электрического поля, в которой вектор поля представлял бы направление и скорость (ну, например, был бы током) каких-то вылетающих маленьких «дробинок», и если бы эта модель требовала, чтобы число дро­бинок сохранялось и ни одна не могла пропасть после вылета из заряда, вот тогда мы могли бы говорить, что «чувствуем» неизбежность закона обратных квадратов. С другой стороны, непременно должен был бы существовать математический способ выражения этой физической идеи. Если бы электрическое поле было подобно сохраняющимся дробинкам, то оно меня­лось бы обратно пропорционально квадрату расстояния и мы могли бы описать такое поведение некоторым уравнением, т. е. чисто математическим путем. Если мы не утверждаем, что элект­рическое поле сделано из дробинок, а понимаем, что это просто модель, помогающая нам прийти к правильной математической теории, то ничего плохого в таком способе рассуждений нет.

Предположим, что мы на мгновение представили себе элект­рическое поле в виде потока чего-то сохраняющегося и текущего повсюду, за исключением того места, где расположен сам заряд (должен же этот поток откуда-то начинаться!).

Фейнмановские лекции по физике. 5. Электричество и магнетизм - _185.jpg

Фиг. 4.5. Поток E из поверхности S равен нулю.

Представим что-то (что именно — неважно), вытекающее из заряда в окружающее пространство. Если бы Е было вектором такого потока (как h — вектор теплового потока), то вблизи от точечного источника оно обладало бы зависимостью 1/r2. Теперь мы желаем исполь­зовать эту модель для того, чтобы глубже сформулировать закон обратных квадратов, а не просто говорить об «обратных квадратах». (Вам может показаться удивительным, почему вместо того, чтобы сходу, прямо и открыто сформулировать столь прос­той закон, мы хотим трусливо протащить то же самое, но с зад­него хода. Немного терпения! Это окажется небесполезным.) Спросим себя: чему равно «вытекание» Е из произвольной замкнутой поверхности в окрестности точечного заряда? Для начала возьмем простенькую поверхность — такую, как пока­зано на фиг. 4.5. Если поле Е похоже на поток, то суммарное вытекание из этого ящика должно быть равно нулю. Это и полу­чается, если под «вытеканием» из этой поверхности мы понимаем поверхностный интеграл от нормальной составляющей Е, т. е. поток Е в том смысле, который был установлен в гл. 3. На бо­ковых гранях нормальная составляющая Е равна нулю. На сферических гранях нормальная составляющая Е равна самой величине Е, с минусом на меньшей грани и с плюсом на большей. Величина Е убывает как 1/r2, а площадь грани растет как r2, так что их произведение от r не зависит. Приток Е через грань а в точности гасится оттоком через грань b. Суммарный поток через S равен нулю, а это все равно, что сказать, что

Перейти на страницу:
Комментариев (0)
название