-->

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Название: Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Дата добавления: 15 январь 2020
Количество просмотров: 261
Читать онлайн

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 31 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _81.jpg

Фиг. 30.4.Разность хода двух лучей, отраженных соседними ли­ниями решетки, равна

dsinqвых — dsinqвх.

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _82.jpg

Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, по­падающего на два соседних штриха, есть a = - dsinqВХ/l. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:

(30.7)

Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что j должно быть числом, кратным 2p. Здесь следует отметить несколько интересных моментов.

Прежде всего, рассмотрим весьма интересный случай, соот­ветствующий m=0; когда d меньше l, тогда m=0и других ре­шений не возникает. Тогда получаем sinqвх = sinqвых,

т. е. рассеянный луч выходит в том же направлении, что и перво­начальный луч, падающий на дифракционную решетку. Но не следует думать, что свет просто «проходит насквозь». Мы ведь говорим о других лучах. Свет, проходящий насквозь, идет от первоначального источника, а мы имеем в виду свет, возникающий при рассеянии. Получается так, что рассеянный пу­чок света идет в том же направлении, что и первоначальный; более того, оба пучка могут интерферировать друг с другом, о чем мы расскажем в последующих главах.

В нашем случае имеется еще одно возможное решение. При заданном qвх угол qвых может быть равен дополнительному к qвх углу (p-qвх). Таким образом, кроме луча в направлении падающего пучка света, возникает еще один луч. Легко заме­тить, что его направление подчиняется правилу: угол падения равен углу рассеяния. Этот луч мы назовем отраженным.

Так мы подходим к пониманию основного механизма процес­са отражения: падающий свет возбуждает движение атомов отражающего тела, а оно в свою очередь генерирует новую волну, и одно из направлений рассеянной волны (единственное для расстояния между рассеивателями, малого по сравнению с длиной волны) таково, что угол падения луча света равен углу, под которым выходит отраженный луч!

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _83.jpg

Перейдем теперь к особому случаю, когда d®0. Имеется, скажем, плотное тело конечных размеров. Потребуем еще, чтобы разность фаз между соседними рассеивателями стремилась к нулю. Иначе говоря, будем ставить все новые и новые антенны в промежутках между прежними, так что разности фаз будут становиться все меньше по мере уменьшения расстояния до соседних антенн, но общее число антенн пусть растет так, что полная разность фаз между первой и последней антенной остает­ся постоянной. Посмотрим, как видоизменится формула (30.3), если полная разность фаз nj остается постоянной (пусть nj =Ф), а число nи фаза j стремятся соответственно к бесконечности и нулю. Теперь значение j так мало, что sinj=j, и если учесть также, что n2I0 есть интенсивность в центре максимума Im, то мы получим

(30.8)

На фиг. 30.2 показан ход этой предельной зависимости.

В данном случае дифракционная картина в общих чертах получается такой же, как и для конечного промежутка d>l, те же боковые максимумы, нет только максимумов высших по­рядков. Когда все рассеиватели находятся в фазе, возникает максимум в направлении qвых =0 и минимум при D =l, в точ­ности как для конечных d и n.Таким образом, оказывается воз­можным рассмотреть непрерывное распределение рассеивателей или осцилляторов, используя интегралы вместо сумм.

Для примера возьмем длинную линию, составленную из ос­цилляторов, которые колеблются вдоль нее (фиг. 30.5). Такое устройство дает максимальную интенсивность в направлении, перпендикулярном нити. Кверху и книзу от экваториальной плоскости имеется небольшая интенсивность, но она очень мала. Пользуясь этим результатом, перейдем к более сложному устрой­ству. Предположим, у нас имеется целый набор нитей, каждая из которых излучает в экваториальной плоскости. Если мы на­ходимся в центральной плоскости, перпендикулярной всем проволокам, интенсивность излучения набора длинных линий в разных направлениях определяется так же, как и в случае бесконечно коротких линий,— нужно сложить вклады от всех длинных проволок.

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _84.jpg

Фиг. 30.5. Распределение интен­сивности излучения непрерывной линии осцилляторов имеет высокий центральный максимум и много­численные слабые боковые максиму­мы.

Вот почему вместо крошечных решеток — антенн, которые мы рассматривали, можно было бы использо­вать решетки с длинными и узкими щелями. Каждая из длинных щелей излучает в своем собственном направлении не вверх и не вниз, а только перпендикулярно щели, и, поставив их рядом друг с другом в горизонтальной плоскости, мы получим интер­ференцию.

Таким образом, можно создать еще более сложные устрой­ства, размещая рассеиватели по линии, в плоскости или в про­странстве. Сначала мы располагали рассеиватели на линии, а затем проанализировали случай, когда они заполняют полосу; для получения ответа каждый раз нужно было просуммировать вклады отдельных рассеивателей. Последний принцип справед­лив во всех случаях.

§ 3. Разрешающая способность дифракционной решетки

Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывает­ся в целый спектр линий, поэтому с помощью дифракционной решетки можно разделить свет по составляющим его длинам волн.

Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или не­сколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется разрешающей спо­собностью решетки. Ниже мы используем один из способов ее определения.

Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы (2pdsinq)/l будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, что­бы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _85.jpg

Фиг. 30.6. Иллюстрация крите­рия Рэлея. Максимум одного распределения совпа­дает с минимумом другого.

Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея, (фиг. 30.6). По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.

1 ... 14 15 16 17 18 19 20 21 22 ... 31 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название