Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Фиг. 30.4.Разность хода двух лучей, отраженных соседними линиями решетки, равна
dsinqвых — dsinqвх.
Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, попадающего на два соседних штриха, есть a = - dsinqВХ/l. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:
(30.7)
Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что j должно быть числом, кратным 2p. Здесь следует отметить несколько интересных моментов.
Прежде всего, рассмотрим весьма интересный случай, соответствующий m=0; когда d меньше l, тогда m=0и других решений не возникает. Тогда получаем sinqвх = sinqвых,
т. е. рассеянный луч выходит в том же направлении, что и первоначальный луч, падающий на дифракционную решетку. Но не следует думать, что свет просто «проходит насквозь». Мы ведь говорим о других лучах. Свет, проходящий насквозь, идет от первоначального источника, а мы имеем в виду свет, возникающий при рассеянии. Получается так, что рассеянный пучок света идет в том же направлении, что и первоначальный; более того, оба пучка могут интерферировать друг с другом, о чем мы расскажем в последующих главах.
В нашем случае имеется еще одно возможное решение. При заданном qвх угол qвых может быть равен дополнительному к qвх углу (p-qвх). Таким образом, кроме луча в направлении падающего пучка света, возникает еще один луч. Легко заметить, что его направление подчиняется правилу: угол падения равен углу рассеяния. Этот луч мы назовем отраженным.
Так мы подходим к пониманию основного механизма процесса отражения: падающий свет возбуждает движение атомов отражающего тела, а оно в свою очередь генерирует новую волну, и одно из направлений рассеянной волны (единственное для расстояния между рассеивателями, малого по сравнению с длиной волны) таково, что угол падения луча света равен углу, под которым выходит отраженный луч!
Перейдем теперь к особому случаю, когда d®0. Имеется, скажем, плотное тело конечных размеров. Потребуем еще, чтобы разность фаз между соседними рассеивателями стремилась к нулю. Иначе говоря, будем ставить все новые и новые антенны в промежутках между прежними, так что разности фаз будут становиться все меньше по мере уменьшения расстояния до соседних антенн, но общее число антенн пусть растет так, что полная разность фаз между первой и последней антенной остается постоянной. Посмотрим, как видоизменится формула (30.3), если полная разность фаз nj остается постоянной (пусть nj =Ф), а число nи фаза j стремятся соответственно к бесконечности и нулю. Теперь значение j так мало, что sinj=j, и если учесть также, что n2I0 есть интенсивность в центре максимума Im, то мы получим
(30.8)
На фиг. 30.2 показан ход этой предельной зависимости.
В данном случае дифракционная картина в общих чертах получается такой же, как и для конечного промежутка d>l, те же боковые максимумы, нет только максимумов высших порядков. Когда все рассеиватели находятся в фазе, возникает максимум в направлении qвых =0 и минимум при D =l, в точности как для конечных d и n.Таким образом, оказывается возможным рассмотреть непрерывное распределение рассеивателей или осцилляторов, используя интегралы вместо сумм.
Для примера возьмем длинную линию, составленную из осцилляторов, которые колеблются вдоль нее (фиг. 30.5). Такое устройство дает максимальную интенсивность в направлении, перпендикулярном нити. Кверху и книзу от экваториальной плоскости имеется небольшая интенсивность, но она очень мала. Пользуясь этим результатом, перейдем к более сложному устройству. Предположим, у нас имеется целый набор нитей, каждая из которых излучает в экваториальной плоскости. Если мы находимся в центральной плоскости, перпендикулярной всем проволокам, интенсивность излучения набора длинных линий в разных направлениях определяется так же, как и в случае бесконечно коротких линий,— нужно сложить вклады от всех длинных проволок.
Фиг. 30.5. Распределение интенсивности излучения непрерывной линии осцилляторов имеет высокий центральный максимум и многочисленные слабые боковые максимумы.
Вот почему вместо крошечных решеток — антенн, которые мы рассматривали, можно было бы использовать решетки с длинными и узкими щелями. Каждая из длинных щелей излучает в своем собственном направлении не вверх и не вниз, а только перпендикулярно щели, и, поставив их рядом друг с другом в горизонтальной плоскости, мы получим интерференцию.
Таким образом, можно создать еще более сложные устройства, размещая рассеиватели по линии, в плоскости или в пространстве. Сначала мы располагали рассеиватели на линии, а затем проанализировали случай, когда они заполняют полосу; для получения ответа каждый раз нужно было просуммировать вклады отдельных рассеивателей. Последний принцип справедлив во всех случаях.
§ 3. Разрешающая способность дифракционной решетки
Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывается в целый спектр линий, поэтому с помощью дифракционной решетки можно разделить свет по составляющим его длинам волн.
Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или несколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется разрешающей способностью решетки. Ниже мы используем один из способов ее определения.
Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы (2pdsinq)/l будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, чтобы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.
Фиг. 30.6. Иллюстрация критерия Рэлея. Максимум одного распределения совпадает с минимумом другого.
Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея, (фиг. 30.6). По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.