Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Теперь мы подошли к одному интересному свойству, весьма полезному на практике. Заметим, что фазовые соотношения между осцилляторами используются при передаче радиоволн. Допустим, мы хотим направить радиосигнал на Гавайские острова. Используем для этого систему антенн, расположенную так, как показано на фиг. 29.5, а, и установим между ними нулевую разность фаз. Тогда максимальная интенсивность будет идти как раз в нужном направлении, поскольку Гавайские острова лежат на западе от США. На следующий день мы решим передавать сигналы уже в Канаду. А поскольку Канада находится на севере, нам надо только изменить знак одной из антенн, чтобы антенны находились в противофазе, как на фиг. 29.5, б, и передача пойдет на север. Можно придумать разные устройства системы антенн
Фиг. 29.6. Две диполъные антенны, дающие максимум излучения в одном направлении.
Наш способ—один из самых простых; мы можем значительно усложнить систему и, выбрав нужные фазовые соотношения, послать пучок с максимальной интенсивностью в требуемом направлении, даже не сдвинув с места ни одну из антенн! Однако в обеих радиопередачах мы затрачивали много энергии зря, она уходила в прямо противоположном направлении; интересно знать, есть ли способ посылать сигналы только в одном направлении? На первый взгляд кажется, что пара антенн такого типа будет всегда излучать симметрично. На самом деле картина гораздо разнообразнее; рассмотрим для примера случай несимметричного излучения двух антенн.
Пусть расстояние между антеннами равно четверти длины волны и северная антенна отстает от южной по фазе на четверть периода. Что у нас тогда получится (фиг. 29.6)? Как мы дальше покажем, в западном направлении интенсивность равна 2. В южном направлении получится нуль, потому что сигнал от северного источника N приходит на 90° позже сигнала от южного источника S и, кроме того, он отстает по фазе еще на 90°; в результате полная разность фаз есть 180° и суммарный эффект равен нулю. В северном направлении сигнал от источника N приходит на 90° раньше сигнала от S, поскольку источник N на четверть волны ближе. Но разность фаз равна 90° и компенсирует задержку во времени, поэтому оба сигнала приходят с одной фазой, что дает интенсивность, равную 4.
Таким образом, проявив некоторую изобретательность в расположении антенн и выбрав нужные сдвиги фаз, можно направить энергию излучения в одном направлении. Правда, энергия будет
все-таки испускаться в довольно большой интервал углов. А можно ли сфокусировать излучение в более узкий интервал углов? Обратимся снова к передаче волн на Гавайские острова; там радиоволны шли на запад и на восток в широком диапазоне углов и даже на угол 30° интенсивность была всего вдвое меньше максимальной, энергия расходовалась впустую.
Можно ли улучшить это положение? Рассмотрим случай, когда расстояние между источниками равно десяти длинам волн (фиг. 29.7), а разность фаз колебаний равна нулю. Это ближе к ситуации, описанной ранее,
когда мы экспериментировали с интервалами, равными нескольким длинам волн, а не малым
долям длины волны.
Фиг. 29.7. Распределение интенсивности двух диполей, находящихся на расстоянии 10l друг от друга.
Здесь иная картина.
Если расстояние между источниками равно десяти длинам волн (мы выбираем более легкий случай, когда они находятся в фазе), то в западном и восточном направлениях интенсивность максимальна и равна 4. Если же сдвинуться на небольшой угол, разность фаз станет равной 180° и интенсивность обратится в нуль. Более строго: если мы проведем прямые от каждого осциллятора до точки наблюдения и вычислим разность расстояний до осцилляторов D, причем D окажется равным l/2, то оба сигнала будут в противофазе и суммарный эффект равен нулю. Этому направлению отвечает первый нуль на фиг. 29.7 (масштаб на рисунке не выдержан, это, по существу, грубая схема). Это означает, что мы получаем узкий луч в нужном направлении; если же мы чуть сдвигаемся в сторону, интенсивность исчезает. Для практических целей, к сожалению, такие передающие системы имеют существенный недостаток: при некотором угле расстояние D может стать равным l и тогда оба сигнала снова окажутся в фазе! В результате получается картина с чередующимися максимумами и минимумами, точь-в-точь как в гл. 28 для расстояния между осцилляторами, равного 2,5l.
Как избавиться от всех лишних максимумов? Существует довольно интересный способ устранения нежелательных максимумов. Поместим между нашими двумя антеннами целый ряд других (фиг. 29.8). Пусть расстояние между крайними по-прежнему равно 10l, а через каждые 2l поставим по антенне и настроим все антенны на одну фазу. Всего у нас будет, таким образом, шесть антенн, и интенсивность в направлении запад — восток, конечно, сильно возрастет по сравнению с интенсивностью от одной антенны. Поле увеличится в шесть раз, а интенсивность, определяемая квадратом поля,— в тридцать шесть раз. Поблизости от направления запад — восток, как и раньше, возникнет направление с нулевой интенсивностью, а дальше, там, где мы ожидали увидеть высокий максимум, появится всего лишь небольшой «горб». Попробуем разобраться, почему так происходит.
Фиг. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.
Причина появления максимума, казалось бы, по-прежнему существует, поскольку D может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилляторами 1 и 6, отличаясь от них по фазе приблизительно на половину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном направлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстояние между соседними диполями равно 2 l, можно найти угол, для которого разность хода s лучей от соседних диполей в точности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоянии между осцилляторами более одной длины волны очень интересно и важно, но не для передачи радиоволн, а для дифракционных решеток.
§ 5. Математическое описание интерференции
Мы рассматривали излучение диполей с качественной точки зрения, теперь рассмотрим количественную картину. Найдем прежде всего суммарное поле от двух источников в самом общем случае, когда разность фаз а и силы осцилляторов a1 и А2 произвольны; для этого необходимо сложить два косинуса с одинаковой частотой, но разными фазами. Разность фаз находится весьма просто: она складывается из разности, возникающей за счет неодинакового удаления точки наблюдения от обоих источников, и внутренней, заданной разности фаз колебаний. Выражаясь математически, нам необходимо сложить две волны: R=a[cos(wt+j1)+А2cos (wt+j2). Как это сделать?
Каждый, вероятно, сумеет провести это сложение, но тем не менее проследим за ходом вычислений. Прежде всего, если мы разбираемся в математике и достаточно ловко управляемся с синусами и косинусами, эту задачу легко решить. Самый простой случай, когда амплитуда a1 равна А2 , и пусть обе они обозначаются через А. В этих условиях (назовем это тригонометрическим методом решения задачи) мы имеем