-->

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Название: Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Дата добавления: 15 январь 2020
Количество просмотров: 261
Читать онлайн

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты читать книгу онлайн

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 11 12 13 14 15 16 17 18 19 ... 31 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _62.jpg
(29.9)

На уроках тригонометрии вы, вероятно, доказывали равенство

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _63.jpg
(29.10)

Если это нам известно, то мы немедленно получаем R:

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _64.jpg
(29.11)

Итак, мы снова получили синусоидальную волну, но с новой фазой и новой амплитудой. Вообще результат сложения двух синусоидальных волн есть синусоидальная волна с новой ам­плитудой AR, называемой результирующей амплитудой, и но­вой фазой jR, называемой результирующей фазой. В нашем частном случае результирующая амплитуда равна

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _65.jpg
(29.12)

а результирующая фаза есть арифметическое среднее обеих фаз. Таким образом, поставленная задача полностью решена. Предположим теперь, что мы забыли формулу сложения ко­синусов. Тогда можно применить другой метод решения — гео­метрический. Косинус, зависящий от wt, можно представить в виде горизонтальной проекции некоторого вращающегося век­тора. Пусть имеется вектор А1, вращающийся с течением вре­мени; длина его равна a1, a угол с осью абсцисс равен wt+j1. (Мы пока опустим слагаемое wt; как мы увидим, при выводе это не играет роли.) Сделаем моментальный снимок векторов в момент времени t=0, помня, что на самом деле вся схема вращается с угловой скоростью w (фиг. 29.9). Проекция a1 на ось абсцисс в точности равна a1cos (wt+j1). В момент времени t=0 вторая волна представляется вектором А2, длина которого равна a2, а его угол с осью абсцисс равен j2, причем он тоже вращается с течением времени.

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _66.jpg

Фиг. 29.9. Геометрический способ сложения двух косинусоидаль­ных волн.

Чертеж вращается со скоростью w против часовой стрелки.

Оба вектора вращаются с одинаковой угловой скоростью w, и их относительное распо­ложение неизменно. Вся система вращается жестко, подобно твердому телу.

Горизонтальная проекция А2 равна A2cos(wt + j2). Из векторного анализа известно, что при сложении двух векторов по правилу параллелограмма образуется новый, ре­зультирующий вектор АR, причем

x-компонента его есть сумма х-компонент слагающих векторов. Отсюда получаем решение нашей задачи. Легко проверить, что получается правильный ответ в нашем частном случае a12=А. Действительно, из фиг. 29.9 очевидно, что ARлежит посредине между a1 и А2 и составляет угол 1/2 (j2-j1) с каждым из них. Следовательно, AR = 2Аcos1/2 (j2-j1), что совпадает с прежним результатом. Кроме того, в случае А1-А2фаза AR есть среднее от фаз a1 и А2. Для неравных A1и А2задача решается столь же просто. Мы можем назвать это геометрическим решением задачи.

Существует еще один метод решения задачи, его можно было бы назвать аналитическим. Вместо того чтобы рисовать схему, подобную приведенной на фиг. 29.9, напишем выраже­ния, имеющие тот же смысл, что и чертеж, и сопоставим каж­дому вектору комплексное число. Действительные части этих комплексных чисел отвечают реальным физическим величинам. В нашем конкретном случае волны записываются следующим образом: A1ехр[i(wt+j1)] [действительная часть этого равна A1cos(wt+j1)] и A2ехр[i(wt-+j2)]. Сложим обе волны:

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _67.jpg
(29.13)

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _68.jpg
(29.14)

Задача, таким образом, решена, так как мы имеем окончатель­ный результат в виде комплексного числа с модулем ARи фа­зой jR.

Для иллюстрации аналитического метода найдем амплитуду АR , т. е. «длину» R. «Длина» комплексного числа в квадрате есть само комплексное число, умноженное на сопряженное ему.

Комплексное сопряжение состоит в изменении знака i . Отсюда получаем

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _69.jpg
(29.15)

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _70.jpg

(С помощью формул тригонометрии легко установить совпаде­ние получаемого результата с длиной ARна фиг. 29.9.)

Итак, суммарная интенсивность складывается из члена А12, возникающего от действия только первого источника, интенсив­ности А22, равной интенсивности второго источника, и еще дополнительного члена. Этот дополнительный член мы назовем эффектом интерференции. Он представляет собой разность между истинным результатом сложения и суммой интенсивностей. Интерференционный член может быть как положительным, так и отрицательным. [Интерференция (interference) в англий­ской разговорной речи означает возражение, помеху, но в фи­зике слова часто теряют первоначальный смысл и употребляются совсем в другом значении!] Если интерференционный член по­ложителен, мы будем говорить о конструктивной интерферен­ции (буквальный смысл этого выражения покажется ужасным всем, кроме физиков!). В противном случае мы говорим о дест­руктивной интерференции.

Посмотрим теперь, как применить нашу общую формулу (29.16) для сложения полей излучения двух осцилляторов к тем частным случаям, которые мы уже качественно обсуждали. Для этого необходимо лишь вычислить разность фаз j1 -j2 двух сигналов, приходящих в данную точку пространства. (Эффект, разумеется, связан с разностью фаз, а не с их абсолютными зна­чениями.) Рассмотрим случай, когда два осциллятора с равными амплитудами и с относительной фазой колебаний а (когда коле­бания одного имеют фазу нуль, фаза другого равна а) располо­жены на расстоянии d друг от друга. Будем искать интенсив­ность под углом q к линии запад — восток. [Заметьте, что этот угол не имеет ничего общего с углом q в формуле (29.1).] Разность расстояний от точки Рдо осцилляторов равна dsinq (фиг. 29.10), поэтому разность фаз, возникающая по этой причине, равна числу длин волн, заключенных на отрезке dsinq, умноженному на 2p.

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _71.jpg

Фиг. 29.10. Два осциллятора, обладающие одинаковой амплиту­дой и разностью фаз a.

(Более подготовленный читатель, вероятно, умножил бы волновое число k, т. е. скорость изменения фазы с расстояни­ем, на d sin 0, результат получится тот же самый.) Разность фаз, возникающая из-за разности хода лучей, есть, таким обра­зом, (2pdsinq)/l, но из-за относительного запаздывания осцилляторов возникает дополнительная разность фаз a. Отсюда пол­ная разность фаз двух волн в точке наблюдения равна

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты - _72.jpg
(29.17)

Это выражение охватывает все случаи. Теперь остается только подставить его в (29.16) и положить A12; получится фор­мула, с помощью которой можно вывести все результаты для двух антенн одинаковой интенсивности.

Рассмотрим частные случаи. Например, на фиг. 29.5 мы полагали, что интенсивность на угол 30° равна 2. Откуда это получается? Осцилляторы находятся на расстоянии X/2, следо­вательно, для угла 30° dsinq=l/4, отсюда j2-j1=2pl/4l=p/2 и интерференционный член равен нулю. (Происходит сло­жение двух векторов, направленных под углом 90" друг к дру­гу.) Сумма векторов есть гипотенуза прямоугольного равнобед­ренного треугольника, она в Ц2раз больше каждой амплитуды. Следовательно, интенсивность в 2 раза больше интенсивности каждого источника в отдельности. Все остальные примеры исследуются точно таким же способом.

1 ... 11 12 13 14 15 16 17 18 19 ... 31 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название