-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 218
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 43 ВПЕРЕД
Перейти на страницу:

э. д. с. цепи равна

Фейнмановские лекции по физике. 6. Электродинамика - _115.jpg

(17.19)

Ток в цепи пропорционален этой э. д. с. и обратно пропорционален сопротивлению цепи:

Фейнмановские лекции по физике. 6. Электродинамика - _116.jpg

(17.20)

Благодаря этому току на перемычку будет действовать маг­нитная сила, пропорциональная длине перемычки, току в ней и магнитному полю:

Фейнмановские лекции по физике. 6. Электродинамика - _117.jpg

(17.21)

Фейнмановские лекции по физике. 6. Электродинамика - _118.jpg

Подставляя I из (17.20), получаем для силы

(17.22)

Мы видим, что сила пропорциональна скорости перемещения перемычки. Направление силы, как легко понять, противо­положно скорости. Такая «пропорциональная скорости» сила, похожая на силу вязкости, получается всякий раз, когда дви­жущиеся проводники создают индуцированные токи в магнит­ном поле. Вихревые токи, о которых мы говорили в предыду­щей главе, приводят также к силам, действующим на провод­ники и пропорциональным скорости проводника, хотя такие случаи в общем дают более сложные распределения токов, которые трудно анализировать.

При конструировании механических систем часто бывает удобно располагать тормозящими силами, пропорциональными скорости. Вихревые токи дают один из наиболее удобных способов получения таких зависящих от скорости сил.

Пример применения подобных сил можно найти в обычном домашнем счетчике — ваттметре. Там имеется тонкий алюми­ниевый диск, вращающийся между полюсами постоянного маг­нита. Этот диск приводится в движение маленьким электро­мотором, вращающий момент которого пропорционален мощ­ности, потребляемой в электросети квартиры. Вихревые токи в диске вызывают силу сопротивления, пропорциональную скорости. Следовательно, скорость диска устанавливается пропорциональной скорости потребления электроэнергии. С по­мощью счетчика, присоединенного к вращающемуся диску, подсчитывается число оборотов диска. Так определяется полная потребленная энергия, т. е. число использованных ватт-часов.

Согласно формуле (17.22), сила от индуцированных токов, т. е. всякая сила от вихревых токов, обратно пропорцио­нальна сопротивлению. Сила тем больше, чем лучше электро­проводность материала. Причина, разумеется, заключается в том, что при малом сопротивлении э. д. с. создает больший ток, а большие токи дают большие механические силы.

Из наших формул мы можем увидеть, как механическая энергия превращается в электрическую энергию. Как и раньше, электрическая энергия, выделяемая в сопротивлении цепи, есть произведение eI, Работа в единицу времени, совершаемая при движении перекладины, есть произведение силы, действующей на перекладину, на ее скорость. Используя для силы выраже­ние (17.21), получаем работу в единицу времени:

Фейнмановские лекции по физике. 6. Электродинамика - _119.jpg

Мы видим, что она действительно равна произведению $I, которое мы получаем из (17.19) и (17.20). Снова механическая работа появляется в виде электрической энергии.

§ 6. Взаимная индукция

Теперь нам нужно рассмотреть случай, когда проволочные катушки неподвижны, а меняются магнитные поля. Описывая образование магнитного поля токами, мы рассматривали только случай постоянных токов. Но если токи меняются медленно, магнитное поле в каждый момент будет примерно такое же, как магнитное поле постоянного тока. Мы будем считать в этом параграфе, что токи всегда меняются достаточно медленно, и можно сказать, что это утверждение справедливо.

На фиг. 17.8 показано устройство из двух катушек, с по­мощью которого можно продемонстрировать основные эффекты, ответственные за работу трансформатора. Катушка 1состоит из проводящей проволоки, свитой в виде длинного соленоида. Вокруг этой катушки и изолированно от нее навита катушка 2, состоящая из нескольких витков проволоки. Если теперь по катушке 1 пропустить ток, то, как мы знаем, внутри нее по­явится магнитное поле. Это магнитное поле проходит также сквозь катушку 2. Когда ток в катушке 1 меняется, магнитный поток тоже будет меняться, и в катушке 2 появится индуциро­ванная э.д.с. Эту индуцированную э.д.с. мы сейчас и вычислим.

Фейнмановские лекции по физике. 6. Электродинамика - _120.jpg

В гл. 13, § 5 (вып. 5) мы видели, что магнитное поле внутри длинного соленоида однородно и равно

(17.23)

где N1 — число витков в катушке 1, I1 — ток в ней, а l — её длина. Пусть поперечное сечение катушки 1 равно S, тогда поток поля В равен его величине, умноженной на S. Если в ка­тушке 2 имеется N2 витков, то поток проходит по катушке N2 раз. Поэтому э. д. с. в катушке 2 дается выражением

Фейнмановские лекции по физике. 6. Электродинамика - _121.jpg

.(17.24)

Единственная меняющаяся со временем величина в (17.23) есть I1. Поэтому э. д. с. дается выражением

Фейнмановские лекции по физике. 6. Электродинамика - _122.jpg

(17.25)

Фейнмановские лекции по физике. 6. Электродинамика - _123.jpg

Мы видим, что э. д. с. в катушке 2 пропорциональна скорости изменения тока в катушке 1. Константа пропорциональности — по существу геометрический фактор двух катушек, называется коэффициентом взаимной индукции и обозначается обычно m21. Тогда (17.25) записывается уже в виде

(17.26)

Фейнмановские лекции по физике. 6. Электродинамика - _124.jpg

Предположим теперь, что нам нужно было бы пропустить ток через катушку 2 и нас интересует, чему равна э. д. с. в ка­тушке 1. Мы вычислили бы магнитное поле, которое повсюду пропорционально току I2. Поток сквозь катушку Iзависел бы от геометрии, но был бы пропорционален току I2. Поэтому

Фиг. 17.8. Ток в катушке 1 соз­дает магнитное поле, проходящее через катушку 2.

Фейнмановские лекции по физике. 6. Электродинамика - _125.jpg

Фиг. 17.9. Любые две катушки обладают взаимной индукцией m, пропорциональной инте­гралу от ds1·ds2· (1/r12).

Фейнмановские лекции по физике. 6. Электродинамика - _126.jpg

э. д. с. в катушке 1 снова была бы пропорциональна dI2/dt. Мы можем записать

(17.27)

Вычисление m 12 было бы труднее, чем те вычисления, кото­рые мы проделали для m 21. Мы не будем сейчас им заниматься, потому что дальше в этой главе мы покажем, что m 12 обя­зательно равно m 21.

Поскольку поле любой катушки пропорционально текущему в ней току, такой же результат получился бы и для любых двух катушек из проволоки. Выражения (17.26) и (17.27) при­обрели бы одинаковую форму, и только постоянные m 12 и m 21 были бы другие. Их значения будут зависеть от формы кату­шек и их относительного положения.

Предположим, нам нужно найти коэффициент взаимной ин­дукции между двумя произвольными катушками, например показанными на фиг. 17.9. Мы знаем, что общее выражение для э. д. с. в катушке 1 можно записать так:

Фейнмановские лекции по физике. 6. Электродинамика - _127.jpg

Фейнмановские лекции по физике. 6. Электродинамика - _128.jpg

где В — магнитное поле, а интеграл берется по поверхности, ограниченной контуром 1. В гл. 14, § 1 (вып. 5) мы видели, что поверхностный интеграл от В можно свести к контурному ин­тегралу от векторного потенциала. В нашем случае

1 ... 12 13 14 15 16 17 18 19 20 ... 43 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название