-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 220
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 15 16 17 18 19 20 21 22 23 ... 43 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 6. Электродинамика - _157.jpg

Теперь предположим, что наша система (имея в виду источники и поля) — конечная, так что, когда мы уходим на большие рас­стояния, все поля стремятся к нулю. Тогда при интегрировании по всему пространству подстановка ByAzна пределах интеграла дает нуль. У нас остается только В (дАг/дх); это, очевидно, есть часть от By(СXA)yи, значит, от В·(СXA). Если вы вы­пишите остальные пять множителей, то увидите, что (17.47) на самом деле эквивалентно (17.46).

А теперь мы можем заменить (СXA) на В и получить

Фейнмановские лекции по физике. 6. Электродинамика - _158.jpg

(17.48)

Фейнмановские лекции по физике. 6. Электродинамика - _159.jpg

Мы выразили энергию в магнитостатическом случае только через магнитное поле. Выражение тесно связано с формулой, которую мы нашли для электростатической энергии:

(17.49)

Эти две энергетические формулы выделены потому, что иногда ими удобнее пользоваться. Обычно есть и более важная причина: оказывается, что для динамических полей (когда Е и В меняются со временем) оба выражения (17.48) и (17.49) остаются справедливыми, тогда как другие данные нами фор­мулы для электрической и магнитной энергий перестают быть верными — они годятся лишь для статических полей.

Фейнмановские лекции по физике. 6. Электродинамика - _160.jpg

Если нам известно магнитное поле В одной катушки, мы можем найти коэффициент самоиндукции, приравнивая выра­жение для энергии (17.48) и 1/2жI2. Посмотрим, что получится в результате для индуктивности длинного соленоида. Раньше мы видели, что магнитное поле в соленоиде однородно и В снаружи равно нулю. Величина поля внутри равна В=nI/e0с2, где n — число витков на единицу длины намотки, а I — ток. Если радиус катушки r, а длина ее L (мы считаем, что L очень велика, чтобы можно было пренебречь краевыми эффектами, т. е. L >>r), то внутренний объем равен pr2L. Следовательно, магнитная энергия равна

что равно 1/2^I2. Или

Фейнмановские лекции по физике. 6. Электродинамика - _161.jpg

(17.50)

* Кстати, это не единственный способ установления соответствия между механическими и электрическими величинами.

* Мы пренебрегаем всеми тепловыми потерями энергии в сопротив­лении катушки. Эти потери требуют дополнительных затрат энергии источника, но не меняют энергии, которая тратится на индуктивность.

Глава 18

УРАВНЕНИЯ МАКСВЕЛЛА

§ 1. Уравнения Максвелла

§ 2. Что дает добавка

§ 3. Все о класси­ческой физике

§ 4. Передвигаю­щееся поле

§ 5. Скорость света

§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение

§ 1. Уравнения Максвелла

В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). , До сих пор мы изучали уравнения Максвелла не­большими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом. Все сказанное в этой главе, если даже оно и будет противоречить чему-то сказанному ранее, правильно, а то, что говорилось ранее в этих случаях, неверно, потому что все высказанное ранее применялось к таким част­ным случаям, как, скажем, случаи постоянного тока или фиксированных зарядов. Хотя всякий раз, когда мы записывали уравнение, мы весьма старательно указывали ограничения, легко по­забыть все эти оговорки и слишком хорошо заучить ошибочные уравнения. Теперь мы можем изложить всю истину, без всяких ограни­чений (или почти без них).

Все уравнения Максвелла записаны в табл. 18.1 как словесно, так и в математических символах. Тот факт, что слова эквивалентны уравнениям, должен быть сейчас вам уже зна­ком — вы должны уметь переводить одну форму в другую и обратно.

Первое уравнение — дивергенция Е равна плотности заряда, деленной на eо,— правильно всегда. Закон Гаусса справедлив всегда как в динамических, так и в статических полях. Поток Е через любую замкнутую поверхность пропорционален заключенному внутри заряду. Третье уравнение — соответствующий общий закон для магнитных полей.

Уравнения Максвелла

Фейнмановские лекции по физике. 6. Электродинамика - _162.jpg

(Поток Е через замкнутую поверх­ность) = (Заряд внутри нее)/e0

Фейнмановские лекции по физике. 6. Электродинамика - _163.jpg

(Интеграл от Е по замкнутому кон­туру) = -d/dt(Поток В сквозь контур)

Фейнмановские лекции по физике. 6. Электродинамика - _164.jpg

(Поток В через замкнутую поверх­ность) = 0

Фейнмановские лекции по физике. 6. Электродинамика - _165.jpg

с2 (Интеграл от В по контуру)=(Ток в контуре) /e0 + d/dt(Поток Е сквозь контур)

Фейнмановские лекции по физике. 6. Электродинамика - _166.jpg

(Поток заряда через замкнутую по­верхность) =-d/dt(Заряд внутри нее)

Закон силы

F = q(E+vXB)

Закон движения

(Закон Ньютона, исправлен­ный Эйнштейном}

Фейнмановские лекции по физике. 6. Электродинамика - _167.jpg

Гравитация

Поскольку магнитных зарядов нет, поток В через любую замкнутую поверхность всегда равен нулю. Второе уравнение СXE=-dB/dt — это закон Фарадея, и обсуждался он в последних двух главах. Он тоже верен в общем случае. Но последнее уравнение содержит нечто новое. Раньше мы встречались только с частью его, которая годится для постоянных токов. В этом случае мы говорили, что ротор В равен j/e0c2, но правильное общее уравнение имеет новый член, который был открыт Максвеллом.

До появления работы Максвелла известные законы элек­тричества и магнетизма были такими же, как те, что мы изучали в гл. 3—14 (вып. 5) и гл. 15—17. В частности, урав­нение для магнитного поля постоянных токов было известно только в виде

Фейнмановские лекции по физике. 6. Электродинамика - _168.jpg

(18.1)

Максвелл начал с рассмотрения этих известных законов и вы­разил их в виде дифференциальных уравнений, так же как мы поступили здесь. (Хотя символ С еще не был придуман, впер­вые, в основном благодаря Максвеллу, стала очевидной важ­ность таких комбинаций производных, которые мы сегодня называем ротором и дивергенцией.) Максвелл тогда заметил, что в уравнении (18.1) есть нечто странное. Если взять дивер­генцию от этого уравнения, то левая сторона обратится в нуль, потому что дивергенция ротора всегда равна нулю. Таким об­разом, это уравнение требует, чтобы дивергенция j также была равна нулю. Но если дивергенция j равна нулю, то полный ток через любую замкнутую поверхность тоже равен нулю.

1 ... 15 16 17 18 19 20 21 22 23 ... 43 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название