-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 218
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 11 12 13 14 15 16 17 18 19 ... 43 ВПЕРЕД
Перейти на страницу:

скорость.

Но можно рассуждать и по-другому. Используя закон сох­ранения момента количества движения, мы могли бы сказать, что момент диска со всеми его пристройками вначале равен нулю, поэтому момент всей системы должен оставаться нуле­вым. Никакого вращения при остановке тока быть не должно. Какое из доказательств правильно? Повернется ли диск или нет? Мы предлагаем вам подумать над этим вопросом.

Хотелось бы предостеречь вас, что правильный ответ не за­висит от всяких несущественных факторов, таких, как несим­метричное положение батареи, например. В самом деле, вы можете представить себе, скажем, такой идеальный случай: соленоид сделан из сверхпроводящей проволоки, через которую проходит ток. После того как диск тщательно установлен неподвижным, температуру соленоида медленно начинают повышать. Когда температура проволоки достигнет переход­ного значения между сверхпроводимостью и нормальной прово­димостью, ток в соленоиде обратится в нуль вследствие сопро­тивления проволоки. Поток, как и раньше, упадет до нуля и вокруг оси возникнет электрическое поле. Мы хотели бы также предостеречь вас, что решение не простое, но это и не обман. Когда вы разберетесь в этом, вы обнаружите важный закон электромагнетизма.

§ 5. Генератор переменного тока

В оставшейся части этой главы мы применим принципы, из­ложенные в § 1 для анализа ряда явлений, обсуждавшихся в гл. 16. Сначала мы рассмотрим подробно генератор перемен­ного тока. Такой генератор в основном состоит из проволочной катушки, вращающейся в однородном магнитном поле. Тот же самый результат может быть достигнут с помощью неподвиж­ной катушки в магнитном поле, направление которого вращает­ся по способу, описанному в предыдущей главе. Мы рассмотрим лишь первый случай. Пусть имеется круглая катушка из про­волоки, которая может вращаться вокруг оси, проходящей вдоль одного из ее диаметров. И пусть эта катушка помещена в магнитное поле, перпендикулярное оси вращения (фиг. 17.6). Представим себе, что оба конца катушки выведены на внешнюю цепь с помощью каких-нибудь скользящих контактов.

Благодаря вращению катушки магнитный поток через нее будет меняться. Поэтому в цепи катушки появится э. д. с. Пусть S —- площадь катушки, а q — угол между магнитным полем и нормалью к плоскости катушки. Тогда поток через катушку равен

BScosq. (17.13)

Фейнмановские лекции по физике. 6. Электродинамика - _103.jpg

Если катушка вращается с постоянной угловой скоростью w, то q меняется со временем как wt. Тогда э. д. с. о в ка­тушке равна

Фейнмановские лекции по физике. 6. Электродинамика - _104.jpg

или

(17.14)

Фейнмановские лекции по физике. 6. Электродинамика - _105.jpg

Если мы выведем провода из генератора на некоторое рас­стояние от вращающейся катушки, в место, где магнитное поле равно нулю или хотя бы не меняется со временем, то ротор от Е в этой области будет равен нулю, и мы сможем определить электрический потенциал. В самом деле, если ток не уходит из генератора, то разность потенциалов V между двумя прово­дами будет равна э. д. с. вращающейся катушки, т. е.

Фейнмановские лекции по физике. 6. Электродинамика - _106.jpg

Фиг. 17.6. Катушка из проволоки, вращающаяся в однородном маг­нитном поле,основная идея ге­нератора переменного тока.

Разность потенциалов в проводах меняется как sinwt. Такая меняющаяся разность потенциалов называется переменным напряжением.

Поскольку между проводами имеется электрическое поле, они должны быть электрически заряжены. Ясно, что э. д. с. генератора выталкивает лишние заряды в провода, пока их электрическое поле не становится достаточно сильным, чтобы в точности уравновесить силу индукции. Если посмотреть на генератор со стороны, то покажется, будто два провода электро­статически заряжены до разности потенциалов V, а заряды как бы меняются со временем, создавая переменную разность потенциалов. Есть и еще одно отличие от того, что наблюдается в случае электростатики. Если присоединить генератор к внеш­ней цепи, по которой может проходить ток, мы обнаружим, что э. д. с. не позволяет проводам разряжаться, а продолжает подпитывать их зарядами, когда из них уходит ток, стремясь сохранить на проводах одну и ту же разность потенциалов. Если генератор подключен к цепи, полное сопротивление которой равно R, ток в цепи будет пропорционален э. д. с. генератора и обратно пропорционален R. Поскольку э. д. с. синусои­дально изменяется со временем,

Фейнмановские лекции по физике. 6. Электродинамика - _107.jpg

то и ток делает то же самое. Возникает переменный ток

Схема такой цепи приведена на фиг. 17.7.

Мы можем также заметить, что э. д. с. определяет коли­чество энергии, поставляемое генератором. Каждый заряд в проводе получает в единицу времени энергию, равную F·v, где F — сила, действующая на заряд, a v — его скорость. Пусть теперь количество движущихся зарядов на единице длины провода равно n; тогда мощность, выделяющаяся в эле­менте ds провода, равна

Фейнмановские лекции по физике. 6. Электродинамика - _108.jpg

Фейнмановские лекции по физике. 6. Электродинамика - _109.jpg

Фиг. 17.7. Цепь с генератором переменного тока и сопротивле­нием.

В проводе скорость v всегда направлена вдоль ds, так что мощ­ность можно переписать в виде

Фейнмановские лекции по физике. 6. Электродинамика - _110.jpg

Полная мощность, выделяемая во всей цепи, есть интеграл от этого выражения по всей петле:

Фейнмановские лекции по физике. 6. Электродинамика - _111.jpg

(17.15)

Вспомним теперь, что qnv — это ток I и что э. д. с. определяется как интеграл от F/q по всей цепи. Мы получаем

Фейнмановские лекции по физике. 6. Электродинамика - _112.jpg

(17.16)

Когда в катушке генератора имеется ток, на нее непременно действуют механические силы. В самом деле, мы знаем, что вра­щающий момент, действующий на катушку, пропорционален ее магнитному моменту, напряженности магнитного поля В и синусу угла между ними. Магнитный момент есть ток катушки, умноженный на ее площадь. Поэтому вращающий момент равен

Фейнмановские лекции по физике. 6. Электродинамика - _113.jpg

(17.17)

Скорость, с которой должна совершаться механическая работа, чтобы поддерживать вращение катушки, есть угловая скорость w, умноженная на вращающий момент силы:

Фейнмановские лекции по физике. 6. Электродинамика - _114.jpg

(17.18)

Сравнивая это выражение с (17.14), мы видим, что затраты механической работы в единицу времени, требуемые для вра­щения катушки против магнитных сил, в точности равны eI — электрической энергии, поставляемой

э. д. с. генератора в еди­ницу времени. Вся механическая энергия, расходуемая в гене­раторе, появляется в виде электрической энергии в цепи.

В качестве другого примера токов и сил, обусловленных индуцированной э. д. с., проанализируем, что же происходит в установке, показанной на фиг. 17.1. Имеются U-образная проволока и скользящая перемычка, расположенные в однородном магнитном поле, перпендикулярном плоскости парал­лельных проволок. Теперь предположим, что «дно» U (левая часть фиг. 17.1) сделано из проволоки с большим сопротивле­нием, тогда как две боковые проволоки сделаны из хорошего проводника вроде меди — в этом случае нам не надо беспо­коиться об изменении сопротивления цепи при движении пе­рекладины. Как и раньше,

1 ... 11 12 13 14 15 16 17 18 19 ... 43 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название