-->

Фейнмановские лекции по физике. 6. Электродинамика

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 6. Электродинамика, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 6. Электродинамика
Название: Фейнмановские лекции по физике. 6. Электродинамика
Дата добавления: 15 январь 2020
Количество просмотров: 218
Читать онлайн

Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн

Фейнмановские лекции по физике. 6. Электродинамика - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 43 ВПЕРЕД
Перейти на страницу:

от э. д. с. m(dIz/dt) в цепи 1, умноженный на теперь уже постоянный ток I1 в этой цепи.

Фейнмановские лекции по физике. 6. Электродинамика - _144.jpg

Пусть теперь нам нужно найти силу между любыми двумя катушками, по которым идут токи I1 и I2. Прежде всего мы мог­ли бы использовать принцип виртуальной работы, взяв вари­ацию от энергии (17.38). Мы должны помнить, конечно, что при изменении относительного положения катушек единственной меняющейся величиной является коэффициент взаимной индук­ции m. Тогда мы могли бы записать уравнение виртуальной работы в виде

Фейнмановские лекции по физике. 6. Электродинамика - _145.jpg

Это уравнение ошибочно, потому что, как мы видели раньше, в него включено только изменение энергии двух катушек и не включена энергия источников, которые поддерживают постоян­ными значения токов I1и I2. Мы понимаем теперь, что эти источники должны поставлять энергию для компенсации инду­цированных э. д. с. в катушках во время их движения. Если мы хотим правильно применить принцип виртуальной работы, то должны включить и эти энергии. Но мы видели, что можно сделать и короче — использовать принцип виртуальной рабо­ты, помня, что полная энергия — это взятая с обратным знаком энергия Uмех (то что мы называем «механической энергией»). Поэтому силу можно записать в виде

(17.39)

Фейнмановские лекции по физике. 6. Электродинамика - _146.jpg

Тогда сила между катушками дается выражением

Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией m и коэффициен­тами самоиндукции ж 1 и ж 2двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно воз­растут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с

Фейнмановские лекции по физике. 6. Электродинамика - _147.jpg

таким же успехом записать в следующей форме:

(17.40)

Это просто алгебраическое преобразование. Эта величина долж­на быть всегда положительна при любых значениях I1 и I2. В частности, она должна быть положительна, когда I2 вдруг примет особое значение:

Фейнмановские лекции по физике. 6. Электродинамика - _148.jpg

(17.41)

Фейнмановские лекции по физике. 6. Электродинамика - _149.jpg

Но при таком значении I2 первое слагаемое в (17.40) равно ну­лю. Если энергия положительна, то последнее слагаемое в (17.40) должно быть больше нуля. Мы получаем требование, что

Фейнмановские лекции по физике. 6. Электродинамика - _150.jpg

Таким образом, мы доказали общее соотношение, что величина взаимной индукции m любых двух катушек обязательно меньше или равна геометрическому среднему двух коэффициен­тов самоиндукции (сам m может быть положителен или отри­цателен в зависимости от выбора знаков для токов It и I2):

(17.42)

Фейнмановские лекции по физике. 6. Электродинамика - _151.jpg

Соотношение между mи коэффициентами самоиндукции обычно записывают в виде

(17.43)

Постоянную k называют коэффициентом связи. Если большая часть потока от одной катушки проходит через другую ка­тушку, то коэффициент связи близок к единице; мы говорим, что катушки «сильно связаны». Если катушки значительно удалены друг от друга или же все устроено так, что взаимное проникновение их потоков очень мало, коэффициент связи становится близок к нулю, а коэффициент взаимной индукции очень мал.

Для вычисления взаимной индукции двух катушек мы дали формулу (17.30), которая представляет собой двойной кон­турный интеграл по обеим цепям. Мы могли бы подумать, что та же формула применима и для вывода коэффициента самоин­дукции одной катушки, если оба контурных интегрирования проводить по одной и той же катушке. Однако это не так, пото­му что при интегрировании по двум катушкам знаменатель r12 под знаком интеграла стремится к нулю, когда два элемента длины находятся в одной точке. Коэффициент самоиндукции, получаемый из этой формулы, оказывается бесконечным. Про­исходит это потому, что формула наша — приближенная, и справедлива она только для поперечных сечений проводов в обеих цепях, малых по сравнению с расстоянием от одной цепи до другой. Ясно, что это приближение для отдельной катушки не годится. На самом деле оказывается, что индуктивность от­дельной катушки стремится логарифмически к бесконечности, когда диаметр ее проволоки становится все меньше и меньше.

Фейнмановские лекции по физике. 6. Электродинамика - _152.jpg

Значит, мы должны поискать другой способ вычисления коэффициента самоиндукции одной катушки. При этом надо учесть распределение токов внутри проводника, потому что его размеры — важный параметр. Но мы не будем считать полную индуктивность, а сосчитаем лишь ту ее часть, которая связана с расположением проводников, и не будем учитывать часть, связанную с распределением токов. Пожалуй, самый простой способ найти такую индуктивность — это использовать магнит­ную энергию. Ранее, в гл. 15, § 3, мы нашли выражение для магнитной энергии распределения стационарных токов:

(17.44)

Фейнмановские лекции по физике. 6. Электродинамика - _153.jpg

Если известно распределение плотности тока j, то можно вы­числить векторный потенциал А, а затем, оценив интеграл (17.44), получить энергию. Эта энергия равна магнитной энер­гии самоиндукции, l/2ж I2. Приравнивая их, получаем формулу для индуктивности:

(17.45)

Мы, конечно, ожидаем, что индуктивность есть число, зависящее только от геометрии цепи, а не от тока / в цепи. Формула (17.45) действительно приводит к такому результату, потому что ин­теграл в ней пропорционален квадрату тока — ток входит один раз от j и еще раз от векторного потенциала А. Интеграл, деленный на I2, зависит от геометрии цепи, но не от тока I.

Выражению (17.44) для энергии распределения токов можно придать совсем другую форму, иногда более удобную для вы­числений. Кроме того, как мы увидим позже, именно эта форма важна, потому что она справедлива в более общем случае. В формуле (17.44) и А и j можно связать с В, поэтому можно надеяться, что энергия выразится через магнитное поле — точно так же, как нам удалось связать электростатическую энергию с электрическим полем. Начнем с подстановки e0c2СXВ вместо j. Заменить А мы не можем с той же легкостью, потому что нельзя обратить B=СXA, чтобы выразить А через В. Можно только

Фейнмановские лекции по физике. 6. Электродинамика - _154.jpg

записать

(17.46)

Любопытно, что при некоторых ограничениях этот интеграл можно превратить в

Фейнмановские лекции по физике. 6. Электродинамика - _155.jpg

(17.47)

Фейнмановские лекции по физике. 6. Электродинамика - _156.jpg

Чтобы увидеть это, выпишем подробно типичный множитель. Предположим, что мы взяли множитель (СXB)zAz, входящий в интеграл (17.46). Выписывая полностью компоненты, полу­чаем

(имеются, конечно, еще два интеграла того же сорта). Проинте­грируем теперь первый множитель по х, интегрируя по частям,

1 ... 14 15 16 17 18 19 20 21 22 ... 43 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название