Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Мы сформулируем без доказательства основные результаты статистической механики, построенной на основе квантовой механики. Напомним, что, согласно квантовой механике, связанная потенциалом система, например осциллятор, имеет дискретный набор уровней энергии, т. е. состояний с различной энергией. Возникает вопрос: как модифицировать статистическую механику, чтобы привести ее в согласие с квантовой механикой? Обратите внимание на интересную деталь: хотя большинство задач квантовой механики сложнее соответствующих задач классической физики, проблемы статистической механики решаются с помощью квантовой теории много проще!
Простенький результат классической механики, что n= n0ехр(-энергия/kT), становится в квантовой теории весьма важной теоремой: если набор молекулярных состояний характеризуется энергиями Е0, Е1, e2, ..., Еi, ..., то в случае теплового равновесия вероятность найти молекулу в состоянии с энергией Еiпропорциональна ехр(-Ei/kT). Так определяется вероятность пребывания в различных состояниях. Иначе говоря, относительный шанс — вероятность нахождения в состоянии Е1по сравнению с вероятностью нахождения в состоянии Е0равен
это, конечно, то же самое, что и
потому что Р1=n1/N, а Р0=n0/N. Таким образом, состояния с большей энергией менее вероятны, чем состояние с меньшей энергией. Отношение числа атомов в верхнем состоянии к числу атомов в нижнем состоянии равно е в степени (разность энергий, деленная на kT,с обратным знаком) — очень простая теорема.
Обратим внимание на то, что уровни энергии гармонического осциллятора отстоят друг от друга на равных расстояниях. Припишем низшему уровню энергию Е0=0 (на самом деле эта энергия немного отличается от нуля, но сдвиг всех уровней на одну и ту же величину не имеет значения), тогда энергия следующего уровня E1=hw, затем следует 2hw, 3hw) и т. д.
А теперь посмотрим, что из этого получится. Предположим, что мы изучаем колебания двухатомной молекулы, которую можно сейчас считать гармоническим осциллятором. Каковы относительные шансы найти молекулу в состоянии Е1, а не в состоянии Е0? Ответ: Отношение шанса найти молекулу в состоянии Е1 к шансу найти эту молекулу в состоянии Е0равно ехр(-hw/kT}. Предположим, что kT много меньше hw, т. е. мы находимся в области низких температур. Тогда вероятность обнаружить состояние e1чрезвычайно мала. Практически все молекулы находятся в состоянии Е0. Если изменить температуру, но по-прежнему поддерживать ее очень малой, то шанс найти молекулу в состоянии Е1=hwпо-прежнему бесконечно мал — энергия осциллятора все еще почти равна нулю; она не изменяется с температурой, пока температура остается много меньше hw. Все осцилляторы находятся в низшем состоянии, их движение эффективно «заморожено», и они не дают вклада в теплоемкость. С помощью данных табл. 40.1 можно установить, что при 100°С, а это равно 373˚К (абсолютной температуры), kT много меньше колебательной энергии молекул кислорода и водорода, но сравнимо с колебательной энергией иода. Причина такой разницы в том, что атомы иода гораздо тяжелее атомов водорода и, хотя силы, действующие менаду атомами иода и водорода, сравнимы, молекула иода столь тяжела, что собственная частота ее колебаний чрезвычайно мала по сравнению с собственной частотой водорода. При комнатной температуре kT таково, что hwводорода больше kT, а hw иода — меньше. Поэтому классическую колебательную энергию можно обнаружить только у иода.
Если увеличивать температуру газа, начав с очень малых значений Т, когда почти все молекулы находятся в их низшем состоянии, то появляется ощутимая вероятность найти молекулу во втором состоянии, затем в следующем за ним и т. д. Когда много состояний получают заметную вероятность, газ ведет себя более или менее так, как того требует классическая физика, ведь в этом случае систему квантовых состояний трудно отличить от непрерывного распределения энергии, и система может обладать почти любой энергией. Таким образом, при повышении температуры мы снова попадаем в область классической физики, как это видно из фиг. 40.6. Аналогично можно показать, что точно так же квантуются и вращательные состояния атомов, но эти состояния размещены так тесно, что обычно kT больше расстояния между уровнями. В этом случае возбуждено сразу много уровней и вращательная кинетическая энергия системы ведет себя классически. Лишь водород при комнатных температурах ведет себя иначе.
Это первый случай, когда из сравнения с экспериментом обнаружилось, что с классической физикой что-то неблагополучно, мы искали способы уладить все трудности в квантовой механике тем самым путем, каким это происходило на самом деле. Прошло примерно лет 30 или 40, пока не была обнаружена еще одна трудность, и снова в статистической механике, но на этот раз в механике фотонного газа. Новая задача была решена Планком в первые годы нашего столетия.
* Чтобы вычислить этот интеграл, положим
Тогда
а это двойной интеграл в xy-плоскости. Но его можно вычислить и в полярных координатах:
Глава 41
БРОУНОВСКОЕ ДВИЖЕНИЕ
§ 1. Равнораспределение энергии
§ 2. Тепловое равновесие излучения
§ 3. Равномерное распределение и квантовый осциллятор
§ 4. Случайные блуждания
§ 1. Равнораспределение энергии
Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под микроскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достаточно сведущ, чтобы понимать, что перед ним не живые существа, а просто плавающие в воде соринки. Чтобы окончательно доказать, что это не живые существа, Броун разыскал обломок кварца, внутри которого была заполненная водой полость. Вода попала туда много миллионов лет назад, но и в такой воде соринки все продолжали свою пляску. Казалось, что очень мелкие частицы пляшут непрерывно. Позднее было доказано, что это один из эффектов молекулярного движения и понять его качественно можно, представив себе, что мы откуда-то издалека следим за игрой в пушбол. Мы знаем, что под большим мячом движется толпа людей и каждый толкает мяч, куда хочет. Мы не видим отдельных игроков, потому что поле очень далеко от нас, но мяч мы видим и замечаем, что перемещается он очень беспорядочно. Мы уже знаем из разобранных в предыдущих главах теорем, что средняя кинетическая энергия взвешенной в газе или жидкости маленькой частицы равна 3/2kT, даже если эта частица гораздо тяжелее молекул газа. Если она очень тяжела, то и движется она сравнительно медленно, но на самом деле оказывается, что скорость частицы не так уж мала. Конечно, заметить движение частицы не очень легко, потому что средняя кинетическая энергия 3/2kT соответствует скорости около 1 мм/сек, если диаметр частицы равен 1 —2 мк. Такое движение трудно заметить даже под микроскопом, потому что частица постоянно меняет направление своего движения и пойти в какую-нибудь определенную сторону не желает. В конце главы мы посмотрим, далеко ли она может уйти. Этот вопрос впервые был разрешен Эйнштейном в начале нашего столетия.