Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но вопрос захватывающе интересен. Это один из примеров того, что называют «задачей многих тел», и он содержит много поистине увлекательных вещей. Одна-единственная формула, которую мы получим, решив задачу, должна содержать все детали, например переход газа в твердое состояние или возможные кристаллические строения твердого тела. Многие пытались ее сосчитать, но математические трудности уж очень велики, и дело не в трудности вывода общего закона, а просто в том, чтобы справиться с огромным числом переменных.
Вот и все, что касается распределения частиц в пространстве. На этом, собственно, и кончается классическая статистическая механика, ибо если нам известны силы, то в принципе мы можем найти пространственное распределение, а распределение скоростей находится сразу на все случаи жизни, оно не будет меняться от случая к случаю. Основная задача состоит в получении более конкретной информации из нашего формального решения: это и является основным занятием классической статистической механики.
§ 4. Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, потому что интересно, а иногда и полезно знать, какая часть молекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энергию силы тяжести. Если бы между атомами существовали взаимные силы, то нам, конечно, пришлось бы написать что-нибудь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправдание. Мы видим, что на высоте h находится гораздо меньше молекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.
Фиг. 40.4. Высоты h достигают только те молекулы, скорость которых на высоте h=0 достаточно велика.
Но почему же на большей высоте меньше молекул? Разве не все молекулы, живущие на высоте 0, появляются на высоте h? Нет! Потому что на высоте 0 есть молекулы, движущиеся слишком медленно, и они не способны взобраться на потенциальную гору до высоты h. Вот и ключ к решению задачи о распределении молекул по скоростям; ведь, зная равенство (40.1), мы знаем число молекул, скорость которых слишком мала для достижения высоты h. Их ровно столько, чтобы создать нужное падение плотности при увеличении h.
Давайте сформулируем все поточнее: подсчитаем, сколько молекул проходит снизу вверх через плоскость h=0 (называя заданный уровень нулевой высотой, мы вовсе не считаем, что здесь пол, просто это удобнее нам для начала отсчета, и на отрицательной высоте может находиться газ). Эти молекулы газа движутся во всех направлениях, и некоторые из них проходят через нашу плоскость; таким образом, в любой момент сквозь плоскость снизу вверх проходит известное число молекул в секунду с заданной скоростью. Затем отметим следующее: если через uобозначить скорость, необходимую для того, чтобы подняться на высоту h (кинетическая энергия mu2/2=mgh), то число молекул в секунду, поднимающихся с нижней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает и, не
достигают верхней плоскости. Таким образом,
Но число молекул, пересекающих h с любой скоростью, большей нуля, меньше числа молекул, пересекающих нижний уровень с любой скоростью, большей нуля, хотя бы потому, что внизу больше атомов. Вот и все, что нам нужно. Мы уже знаем, что распределение молекул по скоростям на всех высотах одинаково, ведь мы уже выяснили, что температура во всей атмосфере одинакова. Но поскольку распределение скоростей всюду одинаково и число атомов, пересекающих нижний уровень, больше, то ясно, что отношение n>0(h) (числа атомов, пересекающих высоту h с положительной скоростью) и n>0(0) (числа атомов, пересекающих с положительной скоростью высоту 0) равно отношению плотностей на этих высотах, т. е. ехр(—mgh/kT). Но n>0(h)=h>u(0), поэтому
поскольку 1/2mu2=mgh. Теперь скажем это своими словами: число молекул, пересекающих за 1 сек единичную площадь
на высоте 0 с вертикальной составляющей скорости, превышающей и, равно произведению числа молекул, пересекающих эту площадку со скоростью, большей нуля, на ехр(-mu2/2kT).
Это верно не только для произвольной высоты 0, но и для любой другой высоты, поэтому распределение по скоростям одинаково повсюду! (Окончательный результат не включает высоты h, она появляется только в промежуточных рассуждениях.) Это общая теорема о распределении по скоростям. В ней утверждается, что если в столбе газа просверлить крохотную дырочку, ну совсем малюсенькую, так что столкновения там будут редки и длина пробега молекул между столкновениями будет много больше диаметра дырочки, то молекулы будут вылетать из нее с разными скоростями, но доля частиц, вылетающих со скоростью, превышающей и, равна ехр(-mu2/2kT).
Теперь вернемся к вопросу о том, можно ли пренебрегать столкновениями. Почему это не имеет значения? Мы могли бы повторить все наши доводы, используя не конечную высоту h, а бесконечно малую высоту h, столь малую, что для столкновений между высотами 0 и h было бы слишком мало места. Но это не обязательно: наши доводы, очевидно, основаны лишь на анализе значений энергий и на сохранении энергии; при столкновениях же происходит обмен энергиями среди молекул. Но нам довольно безразлично, следим ли мы за одной и той же молекулой, раз происходит лишь обмен энергиями с другой молекулой. И получается, что если мы даже сделаем это достаточно тщательно (а такую работу тщательно проделать, конечно, труднее), то результат будет тот же.
Интересно, что найденное нами распределение по скоростям имеет вид
n>u~e-к.э./kT. (40.4)
Этот способ описания распределения по скоростям —когда подсчитывается число молекул, проходящих через выделенную площадку с заданной минимальной z-составляющей скорости,— отнюдь не самый удобный. Например, чаще хотят знать, сколько молекул в заданном объеме газа движется, имея z-составляющую скорости между двумя заданными значениями, а это, конечно, из (40.4) сразу не получишь. Поэтому придадим нашей формуле удобную форму, хотя то, что мы получили, — это весьма общий результат. Заметим, что невозможно утверждать, что любая молекула в точности обладает той или иной наперед заданной скоростью; ни одна из них не движется со скоростью, в точности равной 1,7962899173 м/сек. Итак, чтобы придать нашему утверждению какой-то смысл, мы должны спросить, сколько молекул можно найти в заданном интервале скоростей. Нам придется говорить о том, как часто встречаются скорости в интервале между 1,796 и 1,797 и т. п. Выражаясь математически, пусть f(u)du будет долей всех молекул, чьи скорости заключены в промежутке u и u+du, или, что то же самое (если du бесконечно мало), долей всех молекул, имеющих скорость и с точностью до du. На фиг. 40.5 представлена возможная форма функции f(u), а заштрихованная часть ширины du и средней высоты f(u) — это доля молекул f(u)du. Таким образом, отношение площади заштрихованного участка ко всей площади под кривой равно относительному числу молекул со скоростью и внутри отрезка du.