-->

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Название: Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Дата добавления: 15 январь 2020
Количество просмотров: 162
Читать онлайн

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 9 10 11 12 13 14 15 16 17 ... 40 ВПЕРЕД
Перейти на страницу:

Между прочим, когда говорят, что средняя кинетическая энергия частицы равна 3/2 kT, то требуют, чтобы этот результат был выведен из кинетической теории, т. е. из законов Ньютона. Мы уже можем получать разные удивительные вещи с помощью кинетической теории, самое интересное — что удается полу­чить так много из столь малого. Конечно, мы не хотим сказать, что законы Ньютона — это «малое», они на самом деле дают все необходимое для решения задачи, просто нам пришлось потрудиться совсем немного. Как же нам удалось так много по­лучить? Просто мы постоянно исходили из очень важного пред­положения, что если заданная система находится при некоторой температуре в тепловом равновесии, то при той же температуре она будет в равновесии с чем угодно. Скажем, нам хочется пос­мотреть, как движется частица, если она сталкивается с водой.

Для этого представим, что, кроме воды и частицы, есть еще и газ, состоящий из частиц еще одного сорта —маленьких дробинок, которые, как мы предполагаем, с водой не взаи­модействуют и только сильно ударяют по нашей частице. Пред­положим, что частица ощетинилась острыми шипами и все дробинки наталкиваются на них. Об этом воображаемом газе из дробинок при температуре Т нам известно все — это иде­альный газ. Вода — дело сложное, а идеальный газ — он попроще. И вот наша частица находится в равновесии с газом из дробинок. Следовательно, среднее движение частицы долж­но быть таким, каким ему следует быть вследствие столкнове­ний с атомами, потому что если бы частица двигалась относи­тельно воды с большей скоростью, чем положено, то дробинки, отняв у частицы часть ее энергии, нагрелись бы больше, чем вода. Но ведь мы начали с равных температур и предполагаем, что если равновесие однажды наступило, то оно таким и ос­танется; не может вдруг одна часть системы нагреться, а дру­гая остыть.

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _31.jpg

Фиг. 41.1. Чувствитель­ный зеркальный гальва­нометр и образец записи шкалы как функция вре­мени.

Пучок света из источника L отражается от малень­кого зеркальца на шкале.

Это предположение справедливо и его можно доказать, ис­пользуя законы механики, но доказательство очень сложно и понять его можно, только хорошо зная механику. С помощью квантовой механики доказать это гораздо легче, чем с помощью классической. Впервые эту теорему доказал Больцман, а мы, приняв, что она верна, можем утверждать, что если частица сталкивается с воображаемыми дробинками, то ее энергия равна 3/2kT. Но этой же самой энергией она должна обладать, если мы удалим дробинки и оставим частицу наедине с водой при такой же температуре. Это странная, но правильная цепь рассуждений.

Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в дру­гих условиях, позволяющих обнаружить броуновское движе­ние. Если бы мы смогли соорудить чрезвычайно тонкое измери­тельное устройство, скажем, крохотное зеркальце, прикреплен­ное к тонкой кварцевой нити очень чувствительного баллисти­ческого гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пят­ном, то потеряли бы надежду создать совершенный измеритель­ный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркаль­ца равна ll2kT.

Чему равен средний квадратичный угол качаний зеркаль­ца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции /. Формулу для кинети­ческой энергии вращения мы знаем, это равенство (19.8): Т =1/2Iw2. А потенциальная энергия пропорциональна квад­рату угла отклонения, т. е. V = l/2aq2. Но если мы знаем пе­риод колебаний t0и можем вычислить собственную частоту w0= 2p/t0, то можно и потенциальную энергию записать в виде V=1/2/Iw20q2. Мы знаем, что средняя кинетическая энергия равна l/2 kT', но поскольку перед нами гармонический осцил­лятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _32.jpg

Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего ин­струмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос — в каком месте его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварце­вая нить, то охлаждать нужно ее верхний конец, если же зер­кальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затуха­ние колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.

Те же флуктуации работают, и довольно удивительным образом, в электрических цепях. Предположим, что мы пост­роили очень чувствительный, точный усилитель для какой-ни­будь определенной частоты и к его входу подключили резо­нансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _33.jpg

Фиг. 41,2. Резонансная цепь с большим Q.

а — реальная цепь при температуре T; б — искусственная цепь с идеаль­ным (бесшумным) сопротивлением и «генератором шума».

Предположим, что мы захотели как можно точнее изучить флуктуации, для этого мы сняли напряжение, скажем, с индуктивности и подали его на усилитель. Конечно, во всякой цепи такого рода имеются некоторые потери. Это не идеальная резонансная цепь, но все же очень хорошая цепь, и обладает она малым сопротивле­нием (на схеме сопротивление показано, надо только помнить, что оно очень мало). А теперь мы хотим узнать, как велики флуктуации падения напряжения на индуктивности? Ответ: Нам известно, что «кинетическая энергия», запасенная катушкой резонансной цепи, равна 1/2LI2(см. гл. 25). Поэтому среднее значение 1/2 LI2равно 1/2kT, это дает нам среднее квадратич­ное значение тока, а отсюда можно определить и среднее квад­ратичное значение напряжения. Если мы хотим знать падение напряжения на индуктивности, нам пригодится формула

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _34.jpg
, тогда средний квадрат модуля падения напряжения на индуктивности равен <V2L> = L2w20<I2>, a полагая 1/2L<I2> = 1/2kT, получаем

<V2L>=Lw20kT. ... (41.2)

Итак, теперь мы можем рассчитать контур и предсказать, каким в нем будет так называемый шум Джонсона, т. е. шум, свя­занный с тепловыми флуктуациями!

Но откуда же эти флуктуации берутся? А все из-за сопро­тивления, точнее говоря, в результате пляски электронов в сопротивлении. Ведь они находятся в тепловом равновесии с остальным материалом сопротивления, а это приводит к флуктуациям плотности электронов. Таким образом они по­рождают крошечные электрические поля, управляющие резо­нансной цепью.

1 ... 9 10 11 12 13 14 15 16 17 ... 40 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название