Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Между прочим, когда говорят, что средняя кинетическая энергия частицы равна 3/2 kT, то требуют, чтобы этот результат был выведен из кинетической теории, т. е. из законов Ньютона. Мы уже можем получать разные удивительные вещи с помощью кинетической теории, самое интересное — что удается получить так много из столь малого. Конечно, мы не хотим сказать, что законы Ньютона — это «малое», они на самом деле дают все необходимое для решения задачи, просто нам пришлось потрудиться совсем немного. Как же нам удалось так много получить? Просто мы постоянно исходили из очень важного предположения, что если заданная система находится при некоторой температуре в тепловом равновесии, то при той же температуре она будет в равновесии с чем угодно. Скажем, нам хочется посмотреть, как движется частица, если она сталкивается с водой.
Для этого представим, что, кроме воды и частицы, есть еще и газ, состоящий из частиц еще одного сорта —маленьких дробинок, которые, как мы предполагаем, с водой не взаимодействуют и только сильно ударяют по нашей частице. Предположим, что частица ощетинилась острыми шипами и все дробинки наталкиваются на них. Об этом воображаемом газе из дробинок при температуре Т нам известно все — это идеальный газ. Вода — дело сложное, а идеальный газ — он попроще. И вот наша частица находится в равновесии с газом из дробинок. Следовательно, среднее движение частицы должно быть таким, каким ему следует быть вследствие столкновений с атомами, потому что если бы частица двигалась относительно воды с большей скоростью, чем положено, то дробинки, отняв у частицы часть ее энергии, нагрелись бы больше, чем вода. Но ведь мы начали с равных температур и предполагаем, что если равновесие однажды наступило, то оно таким и останется; не может вдруг одна часть системы нагреться, а другая остыть.
Фиг. 41.1. Чувствительный зеркальный гальванометр и образец записи шкалы как функция времени.
Пучок света из источника L отражается от маленького зеркальца на шкале.
Это предположение справедливо и его можно доказать, используя законы механики, но доказательство очень сложно и понять его можно, только хорошо зная механику. С помощью квантовой механики доказать это гораздо легче, чем с помощью классической. Впервые эту теорему доказал Больцман, а мы, приняв, что она верна, можем утверждать, что если частица сталкивается с воображаемыми дробинками, то ее энергия равна 3/2kT. Но этой же самой энергией она должна обладать, если мы удалим дробинки и оставим частицу наедине с водой при такой же температуре. Это странная, но правильная цепь рассуждений.
Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в других условиях, позволяющих обнаружить броуновское движение. Если бы мы смогли соорудить чрезвычайно тонкое измерительное устройство, скажем, крохотное зеркальце, прикрепленное к тонкой кварцевой нити очень чувствительного баллистического гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пятном, то потеряли бы надежду создать совершенный измерительный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркальца равна ll2kT.
Чему равен средний квадратичный угол качаний зеркальца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции /. Формулу для кинетической энергии вращения мы знаем, это равенство (19.8): Т =1/2Iw2. А потенциальная энергия пропорциональна квадрату угла отклонения, т. е. V = l/2aq2. Но если мы знаем период колебаний t0и можем вычислить собственную частоту w0= 2p/t0, то можно и потенциальную энергию записать в виде V=1/2/Iw20q2. Мы знаем, что средняя кинетическая энергия равна l/2 kT', но поскольку перед нами гармонический осциллятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,
Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего инструмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос — в каком месте его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварцевая нить, то охлаждать нужно ее верхний конец, если же зеркальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затухание колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.
Те же флуктуации работают, и довольно удивительным образом, в электрических цепях. Предположим, что мы построили очень чувствительный, точный усилитель для какой-нибудь определенной частоты и к его входу подключили резонансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.
Фиг. 41,2. Резонансная цепь с большим Q.
а — реальная цепь при температуре T; б — искусственная цепь с идеальным (бесшумным) сопротивлением и «генератором шума».
Предположим, что мы захотели как можно точнее изучить флуктуации, для этого мы сняли напряжение, скажем, с индуктивности и подали его на усилитель. Конечно, во всякой цепи такого рода имеются некоторые потери. Это не идеальная резонансная цепь, но все же очень хорошая цепь, и обладает она малым сопротивлением (на схеме сопротивление показано, надо только помнить, что оно очень мало). А теперь мы хотим узнать, как велики флуктуации падения напряжения на индуктивности? Ответ: Нам известно, что «кинетическая энергия», запасенная катушкой резонансной цепи, равна 1/2LI2(см. гл. 25). Поэтому среднее значение 1/2 LI2равно 1/2kT, это дает нам среднее квадратичное значение тока, а отсюда можно определить и среднее квадратичное значение напряжения. Если мы хотим знать падение напряжения на индуктивности, нам пригодится формула
, тогда средний квадрат модуля падения напряжения на индуктивности равен <V2L> = L2w20<I2>, a полагая 1/2L<I2> = 1/2kT, получаем<V2L>=Lw20kT. ... (41.2)
Итак, теперь мы можем рассчитать контур и предсказать, каким в нем будет так называемый шум Джонсона, т. е. шум, связанный с тепловыми флуктуациями!
Но откуда же эти флуктуации берутся? А все из-за сопротивления, точнее говоря, в результате пляски электронов в сопротивлении. Ведь они находятся в тепловом равновесии с остальным материалом сопротивления, а это приводит к флуктуациям плотности электронов. Таким образом они порождают крошечные электрические поля, управляющие резонансной цепью.