-->

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Название: Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Дата добавления: 15 январь 2020
Количество просмотров: 153
Читать онлайн

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 40 ВПЕРЕД
Перейти на страницу:

За изучение этой кривой взялся Планк. Сначала он нашел чисто эмпирический ответ, сравнивая опытную кривую с из­вестными функциями, которые лучше всего эту кривую подгоняли. Таким образом, он получил эмпирическую формулу для средней энергии гармонического осциллятора как функцию температуры. Иначе говоря, он заменил kT правильной фор­мулой, а потом нашел простой вывод этой формулы, правда, при очень странном предположении. Это предположение со­стоит в том, что гармонический осциллятор может поглотить за один прием только энергию hw. После этого нельзя и подумать, что осциллятор может обладать любой энергией. Конечно, это было началом конца классической физики.

Сейчас мы выведем первую правильную формулу квантовой механики. Предположим, что дозволенные уровни энергии гармонического осциллятора лежат на равном расстоянии hw0 друг от друга, поэтому осциллятор может обладать только одной из этих энергий (фиг. 41.5).

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _45.jpg

Фиг. 41.5, Уровни энергии гар­монического осциллятора.

Отстоят друг от друга но равных рас­стояниям En=nhw.

Аргументы Планка выглядят немного сложнее наших, ведь это было самым началом кванто­вой механики, и ему приходилось кое-что доказывать. Ну, а мы просто примем как факт (который Планк и установил), что вероятность того, что занят уровень энергии Е, равна Р(Е)=aехр(-E/kT). Исходя из этого, мы получим правильный результат.

Предположим, что у нас есть много осцилляторов и каждый колеблется с частотой w0. Некоторые из них находятся в низ­шем квантовом состоянии, другие забрались на уровень выше и т. д. Нам нужно знать среднюю энергию этих осцилля­торов. Чтобы найти ее, давайте вычислим полную энергию всех осцилляторов и поделим результат на их число. Тогда мы получим среднюю энергию на осциллятор при тепловом равновесии, а это то же самое, что и энергия при равновесии с излучением черного тела, и ее надо подставить в уравнение. (41.13) вместо kT.

Пусть N0число осцилляторов в основном состоянии (состоянии с наименьшей энергией), N1число осцилляторов в состоянии Е1, n2— число осцилляторов в состоянии E2и т. д. Согласно гипотезе (которую мы не доказали), классические выражения для вероятности ехр(-п. э./kT) или ехр(-к. э./kT) заменяются в квантовой механике на ехр(-DE/kT), где DE — разность энергий, Можно утверждать, что число осцилляторов в первом состоянии N1равно произведению числа молекул в основном состоянии N0на ехр(-hw/kT). Аналогично, n2(число молекул во втором состоянии) равно N2=N0exp(-2hw/kT). Чтобы упростить алгебру, введем х=ехр(-hw/kT). Тогда все выглядит очень просто:

N1=N0x, N2=N0x2 ..., Nn=N0xn.

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _46.jpg

Сначала найдем полную энергию всех осцилляторов. Если осциллятор находится в основном состоянии, его энергия нуль. Если он находится в первом состоянии, то его энергия равна hw0, а таких осцилляторов N1. Значит, в этом состоянии запасена энергия N1hw, или hwN0x. Энергия осцил­лятора во втором состоянии 2hw0, а осцилляторов N2, поэтому мы получаем такую энергию: N22hw=2hw0N0x2 и т. д. Сложив все это, найдем полную энергию Eполн=N0hw (0+х+2х2+Зx3+...). А сколько всего осцилляторов? В основном состоянии, ко­нечно, N0, в первом состоянии Nlи т. д.; снова все сложим и получим Nвcе=N0(1+x+x2+x3+...). Поэтому средняя энергия равна

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _47.jpg

Читателям представляется возможность позабавиться этими суммами и получить от этого удовольствие. Когда вы покон­чите с суммированием и подставите в окончательный результат значение х, то получите, если не ошиблись

Эта формула была не только самой первой формулой, но и самой первой мыслью квантовой механики, и она явилась великолепным ответом на все недоумения предшествующих десятилетий. Максвелл уже понимал, что что-то неверно, но вопрос был в том, что же правильно? Здесь содержится коли­чественный ответ — что же надо взять вместо kT. Выражение для энергии, конечно, стремится к kT при w®0 или при Т®Ґ. Попробуйте это доказать — здесь надо поступить так, как этому учит математика.

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _48.jpg

Выражение для средней энергии содержит знаменитый обрезающий множитель, который предвидел Джине, и если использовать его вместо kT в (41.13), то мы получим распре­деление света в черном ящике:

Итак, мы видим, что при больших w кривая резко идет вниз; хотя в числителе стоит w3, знаменатель содержит е в чрезвы­чайно высокой степени; на кривой нет никакого намека на подъем, и там, где мы того не ждем, не появляется ни ультра­фиолетовых, ни рентгеновских лучей!

Может возникнуть недовольство в связи с тем, что при вы­воде (41.16) мы пользовались квантовой теорией для уровней энергии гармонического осциллятора, а при определении эф­фективного сечения ssмы оставались верны классической тео­рии. Но квантовая теория взаимодействия света с гармониче­ским осциллятором приводит точно к тем же результатам, что и классическая. Это обстоятельство оправдывает то время, которое мы затратили на изучение показателя преломления и рассеяние света, основанное на представлении об атоме как о маленьком осцилляторе, — квантовые формулы получаются точно такими же.

Теперь вернемся к шумам Джонсона в сопротивлении. Мы уже отмечали, что теория мощности шума, по существу, — та же самая, классическая теория излучения черного тела. На самом деле, как мы уже говорили, сопротивление в цепи — это не настоящее сопротивление, а похоже скорее на антенну (антенна ведь тоже похожа на сопротивление, она излучает энергию). Это радиационное сопротивление, и легко под­считать излучаемую им мощность. Эта мощность равна той мощности, которую антенна получает от окружающего ее света, и мы должны прийти к тому же самому распределению с точ­ностью до одного, двух множителей. Мы можем предположить, что сопротивление — это генератор с неизвестным спектром мощности Р(w). Найти распределение поможет то обстоятель­ство, что этот генератор, включенный в резонансную цепь произвольной частоты (как на фиг. 41.2, б), порождает на ин­дуктивности падение напряжения, определяемое равенством

(41.2). Это приведет нас к тому же интегралу, что и (41.10), а продолжая работать тем же методом, мы получим уравнение

(41.3). Для низких температур kT в (41.3), конечно, надо за­менить выражением (41.15). Две теории (излучения черного тела и шумов Джонсона) физически тесно связаны, так как мы можем связать резонансную цепь с антенной, тогда сопро­тивление R будет радиационным сопротивлением в чистом виде. Поскольку (41.2) не зависит от физических свойств сопротив­ления, генератор G для настоящего сопротивления и для ра­диационного сопротивления будет одинаковым. А что же будет источником генерируемой мощности Р(w), если сопротивление R — теперь просто-напросто идеальная антенна, находящаяся в равновесии с ее окружением при температуре Т? Это излу­чение в пространстве при температуре Т, которое обрушивается на антенну в качестве «принятого сигнала» и служит эффективным генератором. Следовательно, двигаясь от (41.13) к (41.3), можно найти прямое соответствие между P'(w) и I(w).

1 ... 12 13 14 15 16 17 18 19 20 ... 40 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название