-->

Фейнмановские лекции по физике. 2. Пространство. Время. Движение

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 2. Пространство. Время. Движение, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Название: Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Дата добавления: 15 январь 2020
Количество просмотров: 286
Читать онлайн

Фейнмановские лекции по физике. 2. Пространство. Время. Движение читать книгу онлайн

Фейнмановские лекции по физике. 2. Пространство. Время. Движение - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном иМэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 7 8 9 10 11 12 13 14 15 ... 26 ВПЕРЕД
Перейти на страницу:

Итак, мы должны попытаться представить себе предметы в мире нового типа, в котором время с пространством смешано в том же смысле, в каком предметы нашего привычного пространственного мира можно разглядывать с разных направ­лений. Мы должны считать, что предметы, занимающие неко­торое место и существующие некоторый период времени, занимают некую «дольку» мира нового типа и что мы смотрим на эту «дольку» с разных точек зрения, когда движемся с разной скоростью. Этот новый мир, эта геометрическая реальность, в которой имеются «дольки», занимающие некоторое про­странство и существующие некоторое время, называется пространством-временем. Данная точка (х, у, z, t) в простран­стве-времени носит название события. Представьте, напри­мер, что ось х мы поместили горизонтально, оси у и z — в двух других направлениях, взаимно перпендикулярных и перпендикулярных к странице (!), а ось t направили верти­кально. Как на такой диаграмме изобразится, скажем, движу­щаяся частица? Когда частица неподвижна, у нее есть какая-то координата х; время течет, а х остается все тем же, и тем же, и тем же. Значит, ее «путь» — это прямая, параллельная оси (а на фиг. 17.1).

Фейнмановские лекции по физике. 2. Пространство. Время. Движение - _43.jpg

Фиг.17.1.Пути трех частиц в пространстве-времени. a частица покоится в точке х=х0; b частица отправилась из точки х= х0 с постоянной скоростью; с частица начала было двигаться, но затормозила; d распространение света.

С другой стороны, если она равномерно удаля­ется, то с течением времени растет и х (b на фиг. 17.1). Таким образом, частица, которая сперва двигалась, а потом стала замедлять свой ход, изобразится чем-то похожим на кривую с на фиг. 17.1. Другими словами, всякая устойчивая, нераспа­дающаяся частица изображается линией в пространстве-времени. А распадающаяся частица изобразится вилкой, потому что она превращается в две частицы, выходящие из одной точки.

А как обстоит дело со светом? Скорость света всегда одна и та же, значит, свет можно изображать прямыми линиями одинакового наклона (d на фиг. 17.1).

Фейнмановские лекции по физике. 2. Пространство. Время. Движение - _44.jpg

Итак, согласно высказанной нами идее, если происходит некое событие, например частица внезапно распадается в ка­кой-то пространственно-временной точке (х, t) на две, то, если это для чего-нибудь нужно, поворотом осей можно полу­чить значения х и t в новой системе (фиг. 17.2, а). Но это не так: ведь уравнение (17.1) не совпадает с преобразованием (17.2), в них по-разному расставлены знаки, в одном встре­чаются sin9 и cos0, а в другом — некоторые алгебраические

Фиг. 17.2. Два изображения распада частицы. а — неверное; 6 верное.

величины. (Вообще-то иногда алгебраические величины вы­ражаются через косинус и синус, но в данном случае это невозможно.) А все-таки эти выражения очень похожи. Как мы с вами увидим, нельзя представлять себе пространство-время в виде реальной обычной геометрии, и все из-за этой разницы в знаках. На самом деле, хотя мы этого пока не под­черкивали, оказывается, что движущийся наблюдатель должен пользоваться осями, равнонаклоненными к линии светового луча, и проектировать точку на эти оси при помощи отрезков, им параллельных. Это показано на фиг. 17.2, б. Мы не будем заниматься этой геометрией, она не особенно помогает; легче работать прямо с уравнениями.

§ 2. Пространственно-временные интервалы

Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеоб­разная. Если это представление о геометрии правильно, то должны существовать такие функции координат и времени, которые не зависят от системы координат. К примеру, при обычных вращениях, если взять две точки, одну для простоты в начале координат обеих систем, а другую в любом другом месте, то в обеих системах координат расстояние между точ­ками будет одинаково. Это первое свойство точек, которое не зависит от частного способа измерения: квадрат расстояния, или x2+y2+z2, не меняется при поворотах. А как с простран­ством-временем? Не трудно показать, что и здесь есть нечто, не зависящее от способа измерения, а именно комбинация c2t222-z2одинакова до и после преобразования

с2t'2-х'2-у'2-z'2=c2t22-y2-z2. (17.3)

Поэтому эта величина, подобно расстоянию, «реальна» в том смысле, который был придан этому слову выше; ее называют интервалом между двумя пространственно-временными точ­ками, одна из которых в этом случае совпадает с началом коор­динат. (Точнее говоря, это не интервал, а квадрат интервала, точно так же как и х22+z2 — квадрат расстояния.) Это название подчеркивает различие в геометриях; обратите вни­мание, что в формуле присутствует с, а некоторые знаки об­ращены.

Давайте избавимся от с, оно нам не нужно, если мы хотим иметь удобное пространство, в котором х и t можно перестав­лять. Представьте, к какой путанице приведет измерение ширины по углу, под которым виден предмет, а толщины — по сокращению мышц при фиксировании глаза на предмет и выражение толщины в метрах, а ширины в радианах. При преобразованиях уравнений типа (17.2) тогда получится страшная неразбериха и ни за что не удастся разглядеть всю простоту и ясность предмета по той технической причине, что одно и то же будет измеряться двумя различными едини­цами. С помощью уравнений (17.1) и (17.3) природа говорит нам, что время равнозначно пространству; время становится пространством; их надо измерять в одинаковых единицах. Какое расстояние измеряет секунда? Из уравнения (17.3) это легко понять: секунда — это 3·108 м, расстояние, которое свет проходит за 1 сек. Иначе говоря, если бы расстояния и время мы измеряли в одинаковых единицах (секундах), то единицей длины было бы 3·108 м и уравнения упростились бы. А другой способ уравнять единицы — это измерять время в метрах. Чему равен метр времени? Метр времени — это время, за какое свет проходит расстояние в 1 .м, т. е. (l/3) ·10-8 сек, или 3,3 миллиардных доли секунды! Иными словами, нам нужно записать все уравнения в системе единиц, где с=1. Когда время и пространство станут измеряться в одинаковых единицах, уравнения, естественно, упростятся;

Фейнмановские лекции по физике. 2. Пространство. Время. Движение - _45.jpg

Может быть, вы сомневаетесь в законности этого или вас «пу­гает», что, положив с=1, вы не сможете вернуться к правиль­ным уравнениям? Напротив, без с их гораздо легче запомнить, а с легко поставить на нужные места, если присмотреться к размерностям. Скажем, в Ц(1—u2) мы видим, что из неимено­ванного числа 1 приходится вычитать именованное (квадрат скорости u2); естественно, этот квадрат нужно разделить на с2, чтобы сделать вычитаемое безразмерным. Таким путем можно расставить с, где полагается.

Очень интересно различие между пространством-временем и обыкновенным пространством, различие между интервалом и расстоянием. Посмотрите на формулу (17.5). Если два события произошли в какой-то системе координат в одно и то же время, по в разных точках пространства, то, поместив начало коорди­нат в точку, изображающую одно из событий, мы получим, что t=0, а, например, х№0. Значит, квадрат интервала получится отрицательным, а сам интервал — мнимым (корень квадратный из отрицательного числа). Интервалы в этой теории бывают и действительные, и мнимые, потому что их квадраты могут быть и положительными, и отрицательными (в отличие от расстояния, квадрат которого бывает только положительным). Когда интервал мнимый, говорят, что интервал между двумя событиями (точками) пространственно-подобный (а не мнимый), потому что такой интервал получался бы всегда, если бы весь мир застыл на одном времени. С другой стороны, если два предмета в данной системе координат попадают в одно и то же место в разные моменты времени, тогда t0, a x=y=z=0 и квадрат интервала положителен; это называется времени-подобным интервалом. Далее, если провести на диаграмме пространства-времени две прямые под углом 45° (в четырех измерениях они обратятся в «конус», называемый световым), то точки на этих прямых будут отделены от начала координат нулевым интервалом. Куда бы из начала координат ни рас­пространялся свет, все равно x2+y2+z2=c2t2, т. е. интервал между событием прихода света в любую точку и началом всегда равен нулю [как легко видеть из (17.5)]. Кстати, мы сейчас доказали, что скорость света в любых системах координат одинакова: ведь если интервал в обеих системах одинаков, то, будучи равен нулю в одной из них, он равен нулю и в дру­гой, и квадрат скорости света — отношение x'2+y'2+z'2к t'2опять равен с2.

1 ... 7 8 9 10 11 12 13 14 15 ... 26 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название