-->

Фейнмановские лекции по физике. 2. Пространство. Время. Движение

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 2. Пространство. Время. Движение, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Название: Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Дата добавления: 15 январь 2020
Количество просмотров: 285
Читать онлайн

Фейнмановские лекции по физике. 2. Пространство. Время. Движение читать книгу онлайн

Фейнмановские лекции по физике. 2. Пространство. Время. Движение - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном иМэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 6 7 8 9 10 11 12 13 14 ... 26 ВПЕРЕД
Перейти на страницу:

Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой М, и предположим, что что-то стряс­лось и оно распалось на две равные части, имеющие скорости w и массы mw. Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса m0. Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию (mw-m02. Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как 2mw=M, то высво­бодившаяся энергия Е = (М-2m02. Это уравнение было ис­пользовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,— иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и М и m0были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если М распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему ука­зали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, под­считали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосред­ственно измерили (не будь формулы Эйнштейна, энергию из­мерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и по­пулярных описаний развития физики и техники. Пробле­ма, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.

Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.

Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии m0c2и говорить с этих пор, что полная энергия объекта равна mc2? Во-первых, если бы нам были видны составные части с массой покоя m0внутри объекта M, то можно было бы говорить, что часть массы M есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри M какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из 2p, потому что он распадается порой и на Зp!

А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mc2тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m0c2, и говорим, что полная энергия частицы равна ее массе движения, умноженной на с2, а когда тело ос­тановится, его энергия есть его масса в покое, умноженная на с2.

И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m0/Ц(l-v2/c2) очень редко употребляется на практике. Вместо этого незаменимыми ока­зываются два соотношения, которые легко доказать:

Е2-P2c2=M02c4 (16.13)

и

Рс=Ev/c (16.14)

Глава 17

ПРОСТРАНСТВО - ВРЕМЯ

§ 1. Геометрия пространства-времени

§ 2. Пространственно-временные интервалы

§ 3. Прошедшее, настоящее, будущее

§ 4. Еще о четырехвекторах

§ 5. Алгебра четырехвекторов

§ 1. Геометрия пространства-времени

Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать на основе наших интуитивных представлений. Очень важ­но ясно представить себе связь пространства и времени, возникающую из преобразований Лоренца. Поэтому мы глубже рассмотрим этот вопрос.

Фейнмановские лекции по физике. 2. Пространство. Время. Движение - _42.jpg

Координаты и время (х, y, z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х', y', z', t'), измерен­ные внутри «движущегося» со скоростью u космического корабля:

Давайте сравним эти уравнения с уравнением (11.5), которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой

х'=хcosq+ysinq,

у' = ycosq-xsinq, (17.2)

z'=z.

В этом частном случае у Мика и Джо оси х' и x повернуты на угол 0. Но и в том и в другом случае мы замечаем, что «штрихованные» вели­чины — это «перемешанные» между собой «нештрихованные»: новое х' есть смесь х и у, а новое у' — другая смесь x и y.

Проведем следующую аналогию: когда мы глядим на пред­мет, мы различаем его «видимую ширину» и «видимую толщину». Но эти два понятия — «ширина» и «толщина» — отнюдь не основные свойства предмета. Отойдите в сторону, взгляните на предмет под другим углом — видимая ширина и видимая толщина предмета станут другими. Можно написать формулы, позволяющие узнать новые ширину и толщину по известным старым и по углу поворота. Уравнения (17.2) — как раз эти формулы. Можно сказать, что данная толщина есть своего рода «смесь» всех ширин и всех толщин. Если б мы не могли сдвинуться с места, если б мы на данный предмет всегда гля­дели из одного и того же положения, то нам все эти рассуж­дения показались бы неуместными; мы ведь и так всегда видели бы пред собой «настоящую» ширину и «настоящую» толщину и знали бы, что это совершенно разные качества предмета: один связан с углом, под каким виден предмет, другой требует фокусирования глаза и даже интуиции. Они казались бы аб­солютно различными, их незачем было бы смешивать. Только потому, что мы в состоянии обойти вокруг предмета, мы по­нимаем, что ширина и толщина — это разные стороны одного и того же предмета.

Нельзя ли взглянуть на преобразование Лоренца таким же способом? Ведь и здесь перед нами смесь — смесь местополо­жения и момента времени. Из значений координаты и времени получается новая координата. Иначе говоря, в измерениях пространства, сделанных одним человеком, есть с точки зрения другого малая примесь времени. Наша аналогия позволяет высказать следующую мысль: «реальность» предмета, на кото­рый мы смотрим, включает нечто большее (говоря грубо и образно), чем его «ширину» и его «толщину», потому что обе они зависят от того, как мы смотрим на предмет. Оказавшись на новом месте, наш мозг немедленно пересчитывает и ширину, и толщину. Но когда мы будем двигаться с большой скоро­стью, наш мозг не сможет немедленно пересчитать координаты и время: у нас нет опыта движений со скоростями, близкими к световой, мы не ощущаем время и пространство как явле­ния одной природы. Все равно как если бы нас усадили на какое-то место, заставили бы разглядывать ширину какого-то предмета и при этом не разрешали бы даже поворачивать голову. Мы теперь понимаем, что, будь у нас такая возмож­ность, мы могли бы увидеть немножко от времени другого человека, как бы «заглянуть» сзади него.

1 ... 6 7 8 9 10 11 12 13 14 ... 26 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название