Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 641
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 41 42 43 44 45 46 47 48 49 ... 70 ВПЕРЕД
Перейти на страницу:

Главный же вопрос теперь заключается вот в чем: выгодны такие стенки или нет? Ответ на него зависит от размеров доме­нов. Предположим, что мы увеличили размеры так, что все стало вдвое больше. При этом объем внешнего пространства, заполненного магнитным полем данной силы, станет в восемь раз больше, а энергия магнитного поля, которая пропорцио­нальна объему, тоже возрастет в восемь раз. Но площадь границы между двумя доменами, на которой сосредоточена энергия стенки, возрастет только в четыре раза. Следователь­но, если кусок железа достаточно велик, ему выгодно расще­питься на некое число доменов. Вот почему лишь очень малень­кие кристаллы могут состоять только из одного домена. Любой большой объект, размер которого больше приблизительно од­ной тысячной миллиметра, будет иметь по крайней мере одну междоменную стенку, а обычный «сантиметровый» объект расщепляется, как это показано на рисунке, на множество до­менов. Расщепление на домены будет происходить до тех пор, пока энергия, необходимая на установление еще одной допол­нительной стенки, не сравняется с уменьшением энергии маг­нитного поля вне кристалла.

Природа же нашла еще один способ понижения энергии. Полю нет никакой необходимости выходить наружу, если, как это показано на фиг. 37.4, г, взять маленькие треугольные области с направленной в сторону намагниченностью. При та­ком расположении, как на фиг. 37.4, г, внешнее поле полностью отсутствует, а площадь доменных стенок лишь незначительно больше.

Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным ку­бом. Его «вертикальный» размер будет отличаться от «горизон­тального».Этот эффект называется магнитострикцией. В ре­зультате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г, не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске нена­магниченного железа.

А что получится, если мы приложим внешнее магнитное по­ле? В качестве простого примера рассмотрим кристалл, домены которого показаны на фиг. 37.4, д. Если мы приложим магнит­ное поле, направленное вверх, то как будет происходить намагничивание кристалла? Прежде всего средняя доменная стен­ка может передвинуться в сторону (направо) и уменьшить энер­гию. Она перемещается таким образом, чтобы область направления «вверх» стала больше области направления «вниз», Элементарных магнитиков, направленных по полю, становится больше, а это приводит к понижению энергии. Таким образом, в куске железа в слабых магнитных полях с самого начала на­магничивания доменная стенка начнет двигаться и «съедать» области, намагниченные противоположно полю. По мере того как поле продолжает увеличиваться, весь кристалл постепенно превращается в один большой домен, в котором внешнее поле помогает сохранять направление «вверх». В сильном магнит­ном поле кристаллы намагничиваются в одну сторону как раз потому, что их энергия в приложенном поле уменьшается. Внешнее магнитное поле кристаллов теперь уже не так сущест­венно.

А что если геометрия кристалла не так проста? Что если какая-то ось кристалла и его спонтанная намагниченность нап­равлены в одну сторону, а мы прилагаем поле, направленное в другую, скажем под углом 45°? Можно думать, что домены по­вернутся так, чтобы их намагниченность стала параллельной полю, а затем они, как и прежде, смогут слиться в один домен. Но сделать это для железа нелегко, ибо энергия, необходимая для намагничивания кристалла, зависит от направления намаг­ничивающего поля относительно кристаллической оси. Намаг­нитить железо в направлении, параллельном кристаллической оси, относительно легко, но для того чтобы намагнитить его в каком-то другом направлении, скажем под углом 45° к на­правлению оси, энергии требуется больше. Следовательно, если в таком направлении приложить магнитное поле, то сначала происходит рост доменов, намагниченных в одном из избран­ных направлений, близких к направлению приложенного поля, пока в эту сторону не будет направлена намагниченность всех областей. Затем при гораздо больших полях общая намагниченность постепенно поворачивается к направ­лению поля, как это показано на фиг. 37.5.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _282.jpg

Фиг. 37.5. Намагничивающее поле Н, направленное под некоторым углом к кристаллической оси, посте­пенно изменяет направление намагниченности М, не изменяя ее величины.

На фиг. 37.6 показаны полученные из опыта кривые намагничивания монокристал­лов железа.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _283.jpg

Фиг. 37.6. График компоненты М, параллельной полю Н, при раз­личных направлениях Н (по отношению к осям кристалла).

Чтобы вы поняли их, я пред­варительно должен объяснить кое-какие обозначения, используемые для описания направлений в кристалле. Существует мно­го способов расслоения кристалла на плос­кости, в которых расположены атомы.

Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую,— вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz. Она называется плос­костью (100), так как обратные величины отрезков, отсекае­мых этой плоскостью по осям у и z, равны нулю.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _284.jpg

Фиг. 37.7. Способы обозначения кристаллических плоскостей.

Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квад­ратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и. z. Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).

Вернемся теперь к фиг. 37.6. На ней мы видим кривые на­магничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь сла­бых, что в нашем масштабе их трудно изобразить, намагничен­ность чрезвычайно быстро возрастает до весьма больших зна­чений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы пе­редвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совер­шенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до на­сыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при боль­ших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать боль­шей намагниченности, она уже равна Mнас— значит, спины всех электронов направлены вверх.

1 ... 41 42 43 44 45 46 47 48 49 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название