Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 445
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 32 33 34 35 36 37 38 39 40 ... 68 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 9. Квантовая механика II - _275.jpg

Фиг. 16.2. Атом с m=-1 излучает вдоль оси z левый фотон.

Амплитуду такого события обозначим буквой b (снова имея в виду амплитуду излучения фотона в некоторый узкий телесный угол DW). С другой стороны, если атом находится в состоянии с m=0, он вообще не сможет испустить фотон в направлении +z, потому что у фотона момент количества движения относительно его направления распространения может быть только +1 или -1.

Далее, можно показать, что b и а связаны. Проделаем над ; системой, изображенной на фиг. 16.1, преобразование инверсии. Это значит, что мы должны представить себе, как будет выглядеть система, если мы каждую ее часть передвинем в соответст­вующую точку с другой стороны от начала координат. Но это не значит, что следует отражать и векторы момента количест­ва движения, ведь они — искусственные образования. Нужно другое — нужно обратить истинный характер движения, соот­ветствующего такому моменту количества движения.

На фиг. 16.3, а мы показали, как выглядит процесс, изобра­женный на фиг. 16.1, до и после инверсии относительно центра атома.

Фейнмановские лекции по физике. 9. Квантовая механика II - _276.jpg

Фиг, 16.3. Если процесс (а) преобразовать путем инверсии относительно центра атома, он станет выглядеть, как (б).

Заметьте, что направление вращения атома не изменилось. В обращенной системе (фиг. 16.3, б) получается атом с m=+1, излучающий вниз левый фотон.

Если мы теперь повернем систему, изображенную на фиг. 16.3, б, на 180° вокруг оси х и у, она совпадет с фиг. 16.2. Сочетание инверсии и поворота превращает второй процесс в первый. Пользуясь табл. 15.2 (стр. 129), мы видим, что поворот на 180° вокруг оси у как раз перево­дит состояние с m=-1 в состояние с m=+1, так что амплитуда b должна быть равна амплитуде а, если не считать возмож­ной перемены знака при инверсии. А перемена зна­ка при инверсии зависит от четностей начального и конечного состояний атома.

В атомных процессах четность сохраняется, так что четность всей системы до и после излучения фотона должна быть одной и той же. Что на самом деле произойдет, зависит от того, положительны или отрицательны четности начального и конечного состоя­ний атома — в разных случаях угловое распределение из­лучения будет различным. Возьмем обычный случай отрица­тельной четности начального состояния атома и положительной четности конечного; он даст так называемое «электрическое дипольное излучение». (Если начальное и конечное состояния об­ладают одинаковой четностью, то говорят, что происходит «маг­нитное дипольное излучение», напоминающее по характеру излучение витка с переменным током.) Если четность начально­го состояния отрицательна, его амплитуда при инверсии, пере­водящей систему из а в б на фиг. 16.3, меняет знак. Конечное состояние атома имеет положительную четность, так что его амплитуда при инверсии знака не меняет. Если в реакции сохраняется четность, то амплитуда b должна быть равна а во величине, но противоположна по знаку.

Мы приходим к заключению, что если амплитуда того, что состояние m=+1 излучит фотон вперед, равна а, то для рас­сматриваемых четностей начального и конечного состояний амплитуда того, что состояние m=-1 излучит вперед ле­вый фотон, равна -а.

Теперь у нас есть все, чтобы найти амплитуду того, что фо­тон будет испущен под углом 0 к оси z. Пусть вначале атом поля­ризован так, что m=+1. Это состояние мы можем разложить на состояния с т = +1, 0, -1 относительно новой оси z', про­веденной в направлении испускания фотона. Амплитуды этих трех состояний — как раз те, которые были приведены в ниж­ней половине табл. 15.2 (стр. 129). Амплитуда того, что правый фотон испускается в направлении 0, равна тогда произведению а на амплитуду того, что в этом направлении будет m=+1, а именно

Фейнмановские лекции по физике. 9. Квантовая механика II - _277.jpg

Амплитуда того, что в том же направлении будет испущен ле­вый фотон, равна произведению -а на амплитуду того, что в новом направлении будет m=-1. Из табл. 15.2 следует

Фейнмановские лекции по физике. 9. Квантовая механика II - _278.jpg

Если вас интересуют другие поляризации, то их амплитуды вы получите из суперпозиции этих двух амплитуд. Чтобы получить интенсивность любой компоненты как функцию угла, вам при­дется, конечно, взять квадрат модуля амплитуд.

§ 2. Рассеяние света

Воспользуемся этими результатами, чтобы решить немного более сложную задачу, но зато и более близкую к реальности. Предположим, что те же атомы находятся в своем основном со­стоянии (j=0) и рассеивают падающий на них пучок света. Пусть свет первоначально распространяется в направлении + z, так что фотоны падают на атом из направления -z, как показано на фиг. 16.4, а.

Фейнмановские лекции по физике. 9. Квантовая механика II - _279.jpg

Фиг. 16.4. Рассеяние света атомом, рас­сматриваемое как процесс, состоящий из двух шагов.

Рассеяние света мы можем рассматри­вать как процесс, состоящий из двух шагов: фотон поглощается, а затем вновь излучается. Если мы начнем с правого фотона (фиг. 16.4, а) и если момент количества движения сохраняется, то после поглощения атом окажется в состоянии с m=+1 (фиг. 16.4, б). Амплитуду этого процесса мы обозначим с. Затем атом может испустить правый фотон в направлении q (фиг.16.4,в). Полная амплитуда того, что правый фотон рассеется в на­правлении q, равна просто произведению с на (16.1). Обозначая эту амплитуду рассеяния <R' |S |R>, имеем

Фейнмановские лекции по физике. 9. Квантовая механика II - _280.jpg

Имеется также амплитуда того, что поглотится правый фотон, а излучится левый. Произведение обеих амплитуд — это амплитуда <L'|S|R>амплитуда того, что правый фотон, рассеявшись, превратится в левый. Используя (16.2), имеем

Фейнмановские лекции по физике. 9. Квантовая механика II - _281.jpg

Теперь посмотрим, что происходит, если на атом падает левый фотон. Когда он поглощается, сам атом переходит в со­стояние с m =-1. Рассуждая так же, как в предыдущем па­раграфе, можно показать, что эта амплитуда будет равна -с. Амплитуда того, что атом в состоянии с m=-1 испустит правый фотон под углом q, равна произведению а на амплитуду <+|Ry(q)| —>, равную 1/2(1- cosq). В итоге получается

Фейнмановские лекции по физике. 9. Квантовая механика II - _282.jpg

Наконец, амплитуда того, что левый фотон после рассеяния останется левым, есть

Фейнмановские лекции по физике. 9. Квантовая механика II - _283.jpg

(здесь минус на минус дал плюс).

Если мы измеряем интенсивность рассеяния для любой дан­ной комбинации круговых поляризаций, то она будет пропор­циональна квадрату одной из этих четырех амплитуд. Например, если падает правополяризованный пучок света, то интенсивность правополяризованного света в рассеянном излучении будет меняться как (1 + cosq)2.

Все это прекрасно, но допустим, что мы хотели бы начать с линейно поляризованного света. Чего можно было бы тогда ожидать? Если свет поляризован вдоль оси х, его можно пред­ставить как суперпозицию право- и левополяризованного по кругу света. Мы пишем [см. гл. 9, § 4 (вып. 8)]

Фейнмановские лекции по физике. 9. Квантовая механика II - _284.jpg

Или если свет поляризован вдоль оси у, то

Фейнмановские лекции по физике. 9. Квантовая механика II - _285.jpg

Ч то вы теперь хотите знать? Хотите знать амплитуду того, что х- поляризованный фотон рассеется под углом в как правый фотон? Пожалуйста. Примените для этого обычное правило комбинирования амплитуд. Сначала умножьте (16.7) на <R'|S. Вы получите

1 ... 32 33 34 35 36 37 38 39 40 ... 68 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название