Фейнмановские лекции по физике. 9. Квантовая механика II
Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
или, если вам больше нравится,
(где dm,m' равно единице при m' = m, и нулю в прочих случаях).
При поворотах вокруг любой другой оси возникает перемешивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера b,a и g. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(g), Ry(a), Rz(b); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.
Как же нам найти матрицу поворота для поворота частицы со спином j на угол q вокруг оси у? Опираясь на основные законы (и на то, что уже было), это сделать нелегко. Мы так поступали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это проделали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.
Допустим, мы расположили все три объекта со спином 1/2 спинами вверх; обозначим такое состояние |+++>. Если мы взглянем на него из системы координат, повернутой относительно оси z на угол j, то каждый плюс останется плюсом, но умножится на еij/2. Таких множителей у нас тройка, так что
Ясно, что состояние |+++> — это как раз то, что мы называем состоянием m=+3/2, или состоянием |3/2, + 3/2>.
Если мы затем повернем эту систему вокруг оси у, то у каждого из объектов со спином 1/2 появится некоторая амплитуда стать плюсом или стать минусом, так что вся система станет теперь смесью восьми возможных комбинаций |+++>,
|++->, |+-+>, |-++>, |+-->, |-+->,
|--+> или |--->. Ясно, однако, что их можно разбить на четыре группы, чтобы каждая соответствовала своему значению m. Прежде всего мы имеем |+++>, для которого m=3/2. Затем имеется тройка состояний |++->, |+-+> и |-++> — каждое с двумя плюсами и одним минусом. Поскольку каждый из объектов со спином 1/2 имеет равные шансы стать после поворота минусом, то каждая из этих трех комбинаций должна войти на равных паях. Поэтому возьмем комбинацию
где множитель 1/Ц3 поставлен для нормировки. Если мы повернем это состояние вокруг оси z, то получим множитель eij/2 для каждого плюса и e-if/2для каждого минуса. Каждое слагаемое в (16.27) умножится на eij/2, и общий множитель еij/2 мы вынесем за скобки. Такое состояние соответствует нашему представлению о состоянии с m=+1/2; мы приходим к выводу, что
Точно так же можно написать
что соответствует состоянию с m=-1/2. Заметьте, что мы берем только симметричные сочетания, у нас нет комбинаций, куда входят слагаемые со знаком минус. Они отвечали бы состояниям с таким же т, но с иным j. Это аналогично случаю спина 1, где (1/Ц2){|+->+|-+>} было состоянием | 1,0>, а (1/Ц2){|+->-|-+>} было состоянием | 0,0>. Наконец, мы имеем
Эта четверка состояний сведена в табл. 16.1.
Таблица 16.1 · СВОДКА СОСТОЯНИЙ

Все, что нам теперь нужно сделать, это взять каждое состояние, повернуть его вокруг оси у и посмотреть, сколько новых состояний оно создаст — пользуясь известной нам матрицей поворота для частицы спина 1/2. Можно поступать так же, как мы это делали в случае спина 1 [см. гл. 10, § 6 (вып. 8)]. (Только алгебры будет побольше.) Мы будем строго следовать идеям гл. 10 (вып. 8), так что подробных объяснений давать не будем. Состояния в системе S будут обозначаться

и т. д.; T-системой будет считаться система, повернутая вокруг оси у системы S на угол q. Состояния в T-системе будут обозначаться |3/2, + 3/2, Т>, |3/2, + 1/2, Т>и т. д. Ясно, что | 3/2, + 3/2, Т>это то же самое, что | +' + ' + ' > (штрихи всегда относятся к T-системе). Точно так же |3/2, +1/2, Т>будет равняться
и т. д. Каждое |+'>-состояние в T-системе получается как из |+>-, так и из |->-состояний в системе S с помощью матричных элементов из табл. 10.4 (вып. 8, стр. 267).
Если мы имеем тройку частиц со спином 1/2, то (10.47) надо заменить на

Пользуясь обозначениями табл. 10.4, получим вместо (10.48) уравнение

Это уже дает нам некоторые из наших матричных элементов <jT| iS>. Чтобы получить выражение для 3/2, +1/2, S> мы должны исходить из преобразования состояния с двумя плюсами и одним минусом. К примеру,

Добавляя два сходных выражения для + — +> и | — + +> и деля на ]/3, найдем

Продолжая этот процесс, мы найдем все элементы <jТ|iS> матрицы преобразования. Они приведены в табл. 16.2. Первый столбец получается из (16.32), второй — из (16.34). Последние два столбца были вычислены таким же способом. Теперь допустим, что T-система была повернута относительно S-системы на угол q вокруг ее оси у. Тогда а, b, с и d равны [см. (10.54), вып. 8]: а=d=cosq/2, с=-b=sinq/2. Подставляя это в табл. 16.2, получаем формулы, похожие на вторую половину табл. 15.2, но на этот раз для системы со спином 3/2.
