Фейнмановские лекции по физике. 7. Физика сплошных сред
Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но ввиду уравнения (33.44) мы получаем
n2sinqt=nisinqi;, (33.47)
т. е. уже известный нам закон Снелла для преломления. Если же показатель преломления не вещественный, то волновые числа оказываются комплексными и нам следует воспользоваться
(33.45). [Конечно, мы могли бы определить углы qi. и qt из
(33.46), и тогда закон Снелла (33.47) был бы верен и в общем случае. Однако при этом углы тоже стали бы комплексными числами и, следовательно, потеряли бы свою геометрическую интерпретацию как углы. Уж лучше описывать поведение волн соответствующими комплексными величинами kx или k"x..]
До сих пор мы не обнаружили ничего нового. Мы доставили себе только простенькое развлечение, выводя очевидные вещи из сложного математического механизма. А сейчас мы готовы найти амплитуды волн, которые нам еще не известны. Используя результаты для всех w и k, мы можем сократить экспоненциальный множитель в (33.38) и получить
е0+е'0=е"0. (33.48)
Но поскольку мы не знаем ни Е'0, ни Е"9, то необходимо еще одно соотношение. Нужно использовать еще одно граничное условие. Уравнения для Ехи Еyне помогут, ибо все Е имеют только одну z-компоненту. Так что мы должны воспользоваться условием на В. Попробуем взять (33.29):
Bx2 =Bx1. Согласно условиям (33.35)—(33.37),

Вспоминая, что w" =w'= w и k"y=k'y=ky, получаем
е0+е'0 =е"0.
Но это снова уравнение (33.48)! Мы напрасно потратили время и получили то, что уже давно нам известно.
Можно было бы обратиться к (33.30) Bz2=Вz1, но у вектора В отсутствует z-компонента! Осталось только одно условие — (33.31) Ву2=Ву1. Для наших трех волн
Подставляя вместо Ei,Erи Etволновые выражения при x=0 (ибо дело происходит на границе), мы получаем следующее граничное условие:
Учитывая равенство всех w и ky , снова приходим к условию kxE0 + k'xE'0=k"xE"0. (33.50)
Это дает нам уравнение для величины Е, отличное от (33.48). Получившиеся два уравнения можно решить относительно E'0 и Е"0. Вспоминая, что k’x=-kx, получаем


Вместе с (33.45) или (33.46) для k”xэти формулы дают нам все, что мы хотели узнать. Следствия полученного результата мы обсудим в следующем параграфе.
Если взять поляризованную волну с вектором Е, параллельным плоскости падения, то Е, как это видно из фиг. 33.7, будет иметь как x-, так и y-компоненту. Вся алгебра при этом будет менее хитрая, но более сложная. (Можно, правда, несколько уменьшить работу в этом случае, выражая все через магнитное поле, которое целиком направлено по оси z.)

Фиг. 33.7. Поляризации волн, когда поле Е в падающей волне параллельно плоскости падения.
При этом мы найдем

и

Давайте посмотрим, будет ли наш результат согласовываться с тем, что мы получали раньше. Выражение (33.3) мы вывели в вып. 3, когда находили отношение интенсивностей отраженной и падающей волн. Однако тогда мы рассматривали только вещественный показатель преломления. Для вещественного показателя (или вещественных k) можно записать:
kx=kcosqi=(wn1/c)cosqi,
k"x=k"cosqt=(wn2/c)cosqt.
Подставляя это в уравнение (33.51), получаем

что нисколько не похоже на уравнение (33.3). Если, однако, мы воспользуемся законом Снелла и избавимся от всех n, то сходство будет восстановлено. Подставляя n2=n1(sinqi/sinqt) и умножая числитель и знаменатель на sinqt, получаем

Обратите внимание, что в числителе и знаменателе стоят просто синусы (qi-qt) и (qi+qt), поэтому

Поскольку амплитуды E'0 и E0 измеряются в том же самом материале, интенсивности пропорциональны квадратам электрических полей и мы получаем тот же результат, что и раньше. Подобным же образом формула (33.53) тоже аналогична формуле (33.4).
Для волн, падающих перпендикулярно, qi=0 и qt=0. Формула (33.56) выглядит как 0/0, от чего нам пользы мало. Однако мы можем вернуться назад к формуле (33.55), согласно которой
Этот результат, естественно, применим для «любой» поляризации, поскольку для перпендикулярного луча нет никакой особой «плоскости падения».
§ 5. Отражение от металлов
Теперь мы можем использовать наши результаты для понимания интересного явления — отражения от металлов. Почему металлы блестят? В предыдущей главе мы видели, что показатель преломления металлов для некоторых частот имеет очень большую мнимую часть. Давайте посмотрим, какова будет интенсивность отраженной волны, когда свет падает из воздуха (с показателем n=1) на материал с n=- inI. При этом условии уравнение (33.55) дает (для нормального падения)

Для интенсивности отраженной волны нам нужны квадраты абсолютных величин Е'0и Е0:

или

Для материала с чисто мнимым показателем преломления получается стопроцентное отражение!
Металлы не отражают 100% света, но все же многие из них хорошо отражают видимый свет. Другими словами, мнимая часть их показателя очень велика. Однако мы видели, что большая мнимая часть показателя означает сильное поглощение. Итак, имеется общее правило: если какой-то материал оказывается очень хорошим поглотителем при какой-то частоте, то отражение волн от его поверхности очень велико и очень мало волн попадает внутрь. Этот эффект вы можете наблюдать на сильных красителях. Чистые кристаллы самых сильных красителей имеют «металлический» блеск. Вероятно, вы замечали, что на краях бутылки с фиолетовыми чернилами засохший краситель имеет золотистый металлический блеск, а засохшие красные чернила имеют иногда зеленоватый металлический оттенок. Красные чернила поглощают из проходящего света зеленые лучи, так что, если концентрация чернил очень велика, они будут давать сильное поверхностное отражение при частоте зеленого света.
