Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 550
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 21 22 23 24 25 26 27 28 29 ... 70 ВПЕРЕД
Перейти на страницу:

m=-(qe/m)J (спин электрона). (34.5)

В любом атоме, вообще говоря, имеется несколько электро­нов, и его полный момент количества движения и полный маг­нитный момент представляют некоторую комбинацию спиновых и орбитальных моментов. И без каких-либо на то классических оснований в квантовой механике (для изолированного атома) направление магнитного момента всегда противоположно на­правлению момента количества движения. Отношение их не обязательно должно быть -qe/m или -qe/2m; оно расположено где-то между ними, ибо здесь «перемешиваются» вклады от спинов и орбит. Можно записать

'm=-g(qe/2m)J (34.6)

где множитель g характеризует состояние атома. Для чисто орбитальных моментов он равен единице, для чисто спиновых равен 2, а для сложной системы, подобной атому, он расположен где-то между ними. Конечно, пользы от этой формулы не очень много. Она только говорит, что магнитный момент параллелен моменту количества движения, но может иметь любую величину. Тем не менее форма уравнения (34.6) все же удобна, ибо вели­чина g, называемая «фактором Ланде», есть безразмерная по­стоянная порядка единицы. Одна из задач квантовой меха­ники — предсказание фактора g для разных атомных состояний. Быть может, вам интересно знать, что происходит в ядрах атомов. Протоны и нейтроны в ядре движутся по своего рода орбитам и в то же время, подобно электронам, имеют спин. Маг­нитный момент снова параллелен моменту количества движе­ния. Только теперь порядок величины отношения магнитного момента к моменту количества движения для каждой из этих частиц будет таким, как можно было ожидать для протона, движущегося по кругу; при этом массу m в уравнении (34.3) нужно взять равной массе протона.

Поэтому для ядер обычно пишут (в скобках положительная величина)

m=g(qe/2mp)J (34.7)

где mpмасса протона, а постоянная g, называемая ядерным g-фактором,— число порядка единицы, которое должно опре­деляться отдельно для каждого сорта ядер.

Другое важное отличие в случае ядер состоит в том, что g-фактор спинового магнитного момента протона не равен 2, как у электрона. Для протона g=2·(2,79). Крайне удивительно, что спиновый магнитный момент есть и у нейтрона и отношение этого магнитного момента к моменту количества движения равно 2·(-1,93). Другими словами, нейтрон в магнитном смысле не будет в точности «нейтральным». Он напоминает маленький маг­нитик и имеет такой же магнитный момент, как и вращающийся отрицательный заряд.

§ 3. Прецессия атомных магнитиков

Одно из следствий пропорциональности магнитного момента моменту количества движения заключается в том, что атомные магнитики, помещенные в магнитное поле, будут прецессироватъ. Обсудим это сначала с точки зрения классической физики. Пусть у нас имеется магнитный момент m, свободно висящий в однородном магнитном поле. Он испытывает действие момента силы t, равного mXB, пытающегося повернуть его в том же направлении, что и поле. Но атомный магнит — ведь это гиро­скоп, у него есть момент количества движения J. Поэтому момент силы от магнитного поля не вызовет поворота в направлении поля. Вместо этого магнит, как мы видели, когда говорили о гироскопе в гл. 20 (вып. 2), начнет првцессироватъ. Момент количества движения, а вместе с ним и магнитный момент прецессируют вокруг оси, параллельной магнитному полю. Скорость прецессии можно найти тем же мето­дом, что и в гл. 20 (вып. 2).

Предположим, что за малый промежуток времени Dt момент количества движения меняется от J до J' (фиг. 34.3), оставаясь при этом всегда под одним и тем же углом q к направлению маг­нитного поля В.

Фейнмановские лекции по физике. 7. Физика сплошных сред - _163.jpg

Фиг. 34.3. Объект в моментом количества движения J и параллельным ему магнитным моментом m в магнитном поле В прецессирует с угловой скоростью wp,.

Обозначим через wp угловую скорость прецес­сии, так что за промежуток времени Dt угол прецессии будет равен wpDt. Из геометрии рисунка мы видим, что изменение момента количества движения за время Dt равно

DJ=(Jsinq)(wpDt), а скорость изменения момента количества движения

dJ/dt=wpJsinq (34.8)

что должно равняться моменту силы

t=mBsinq. (34.9)

Угловая скорость прецессии будет равна

Фейнмановские лекции по физике. 7. Физика сплошных сред - _164.jpg

Подставляя из уравнения (34.6) отношение m/J, мы видим, что для атомной системы

wp=g(qe/2m)B (34.11)

т. е. частота прецессии пропорциональна В. Полезно запом­нить, что для атома (или электрона)

Фейнмановские лекции по физике. 7. Физика сплошных сред - _165.jpg

а для ядра

Фейнмановские лекции по физике. 7. Физика сплошных сред - _166.jpg

(Формулы для атомов и ядер различны только благодаря раз­личным соглашениям относительно g в этих двух случаях.) Итак, в соответствии с классической теорией электронные ор­биты и спины в атоме должны прецессировать в магнитном поле. Верно ли это и в квантовой механике? В сущности это верно, однако смысл «прецессии» здесь совсем иной. В квантовой механике нельзя говорить о направлении момента количества движения в том же смысле, как это делается классически; тем не менее аналогия здесь очень близкая, настолько близкая, что мы продолжаем пользоваться термином «прецессия». Мы еще обсудим это позднее, когда будем говорить о квантовомеханической точке зрения.

§ 4. Диамагнетизм

Рассмотрим теперь с классической точки зрения диамагнетизм. К этому можно подойти несколькими путями, но один из лучших такой. Предположим, что по соседству с атомом мед­ленно включается магнитное поле. При изменении магнитного поля благодаря магнитной индукции будет генерироваться электрическое поле. По закону Фарадея контурный интеграл от Е по замкнутому контуру равен скорости изменения магнит­ного потока через этот контур. Предположим, что в качестве контура Г мы выбрали окружность радиусом r, центр которой совпадает с центром атома (фиг. 34.4).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _167.jpg

Фиг. 34.4. Индуцированные элект­рические силы, действующие на элект­роны в атоме.

Среднее тангенциальное электрическое поле Е на этом контуре определяется выраже­нием

Фейнмановские лекции по физике. 7. Физика сплошных сред - _168.jpg

т. е. возникает циркулирующее электрическое поле, напряжен­ность которого равна

Фейнмановские лекции по физике. 7. Физика сплошных сред - _169.jpg

Индуцированное электрическое поле, действуя на атомный электрон, создает момент силы, равный -qeEr, который дол­жен быть равен скорости изменения момента количества дви­жения dJ/dt:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _170.jpg

Интегрируя теперь по времени, начиная с нулевого поля, мы находим, что изменение момента количества движения из-за включения поля будет равно

Фейнмановские лекции по физике. 7. Физика сплошных сред - _171.jpg

Это и есть тот дополнительный момент количества движения, который сообщается электрону за время включения поля.

Такой добавочный момент количества движения приводит к добавочному магнитному моменту, который благодаря тому, что это орбитальное движение, равен просто произведению -qe/2m на момент количества движения. Наведенный диамаг­нитный момент

1 ... 21 22 23 24 25 26 27 28 29 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название