Фейнмановские лекции по физике. 7. Физика сплошных сред

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 7. Физика сплошных сред, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 7. Физика сплошных сред
Название: Фейнмановские лекции по физике. 7. Физика сплошных сред
Дата добавления: 15 январь 2020
Количество просмотров: 550
Читать онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред читать книгу онлайн

Фейнмановские лекции по физике. 7. Физика сплошных сред - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 70 ВПЕРЕД
Перейти на страницу:

* Или записав — i=е-ip/2; Ц-i=e-ip/4 = соsp/4- isinp/4, что приводит к тому же результату.

* Взяты из справочника «Handbook of Physics and Chemistry».

* Всюду в этой главе мы будем пользоваться обозначениями, приня­тыми в гл. 31 (вып. 3); пусть a — атомная поляризуемость, как это опреде­лено здесь. В предыдущей главе мы пользовались буквой a для обозначе­ния объемной поляризуемости, т. е. отношения Р к Е. Но в обозначениях этой главы P=Nae0E [см. выражение (32.8)].

Глава 33

ОТРАЖЕНИЕ ОТ ПОВЕРХНОСТИ

§1. Отражение и преломление света

§2. Волны в плотных материалах

§3. Граничные условия

§4. Отраженная и преломленная волны

§5. Отражение от металлов

§6. Полное внутреннее отражение

Повторить: гл. 33 (вып. 3) « Поляризация »

§ 1. Отражение и преломление света

Предметом обсуждения в этой главе будет пре­ломление и отражение света и электромагнит­ных волн вообще от поверхности. О законах отражения и преломления света мы говорили уже в вып. 3. Вот что мы там выяснили:

1. Угол отражения равен углу падения. Причем углы определяются, как это показано на фиг. 33.1:

Фейнмановские лекции по физике. 7. Физика сплошных сред - _106.jpg

Фиг. 33.1. Отражение и преломление волн на поверх­ности.

Направления распространения волн перпендикулярны их греб­ням.

qr=qi. (33.1)

2. Произведение nsinq одинаково как для падающего луча, так и для преломленного (закон Снелла):

n1sinq=n2sinqt. (33.2)

3. Интенсивность отраженного света зави­сит как от угла падения, так и от направления поляризации. Для вектора Е, перпендикуляр­ного плоскости падения, коэффициент отраже­ния R равен

Фейнмановские лекции по физике. 7. Физика сплошных сред - _107.jpg

Для вектора Е, параллельного плоскости паде­ния, коэффициент отражения R равен

Фейнмановские лекции по физике. 7. Физика сплошных сред - _108.jpg

4. Для перпендикулярно падающего луча (разумеется, при любой поляризации!)

Фейнмановские лекции по физике. 7. Физика сплошных сред - _109.jpg

(Мы использовали индекс i для обозначения величин в падающем луче, t — в преломленном, а r — в отраженном.)

Наши прежние рас­суждения практически достаточно полны для обычной работы, но мы собираемся применить здесь другой способ. Вы хотите знать почему? Причина заключается в том, что раньше мы считали показатель преломления вещественным (т. е. что никакого поглощения в материале не происходит). Однако есть и другая причина: вам следует уметь обращаться с волнами на поверхности с точки зрения уравнений Максвелла. Ответы, конечно, получатся одинаковые, но теперь уже путем непосред­ственного решения волновой задачи, а не с помощью правдо­подобных рассуждений.

Я хочу подчеркнуть, что амплитуда отраженной от поверх­ности волны не определяется такими свойствами материала, как показатель преломления. Она зависит от чисто «поверхно­стных свойств», которые, строго говоря, определяются тем, как обработана поверхность. Тонкий слой посторонней примеси на границе между двумя материалами с показателями n1 и n2 обычно изменяет отражение. (Имеются всяческие виды интер­ференции, примером которой могут служить разноцветные масляные пленки на воде. Подбором толщины можно свести амплитуду отражения данной частоты к нулю. Именно так и делаются просветленные линзы.) Формулы, которые мы полу­чим, будут верны, только когда показатель преломления резко изменится на расстояниях, малых по сравнению с длиной волны. Длина волны света, например, составляет около 5000 Е, так, что под «гладкой» поверхностью мы понимаем поверхность, на которой условия изменяются всего на протяжении нескольких атомов (или на расстоянии нескольких ангстрем). Так что для света наши формулы будут работать только на хорошо отполированной поверхности. Вообще же если показатель преломления постепенно меняется на расстоянии нескольких длин волн, то отражение будет незначительным.

§ 2. Волны в плотных материалах

Прежде всего я напомню вам об удобном способе описания синусоидальных плоских волн, которым мы пользовались в гл. 36 (вып. 3). Любая компонента поля в волне (возьмем, на­пример, Е) может быть записана в форме

E=E0ei(wt-k·r), (33.6)

где Е — амплитуда поля в точке г (относительно начала коор­динат) в момент t. Вектор k указывает направление распростра­нения волны, а его величина |k|=k=2pl равна волновому числу. Фазовая скорость волны vфаз=w/k для света в материале с показателем n будет равна c/n, поэтому

k=wn/c. (33.7)

Предположим, что вектор k направлен по оси z; тогда k·r будет просто хорошо знакомым нам kz. Для вектора k в любом другом направлении z следует заменить на rkрасстояние от начала в направлении вектора k, т. е. kz мы должны заменить на krk, что как раз равно k·r (фиг. 33.2).

Фейнмановские лекции по физике. 7. Физика сплошных сред - _110.jpg

Фиг. 33.2. Фаза волны в точке Р, распространяющейся в направ­лении k, равна (wt-k·r).

Таким образом, запись (33.6) является удобным представлением волны, идущей в любом направлении.

Разумеется, при этом мы должны помнить, что

k·r=kxx+kyy+k:zz,

где kx, kyи kzкомпоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (w, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде

Фейнмановские лекции по физике. 7. Физика сплошных сред - _111.jpg

Однако сейчас нам такие хитрости не понадобятся.

Для синусоидального по­ля Е, подобного выражению (33.6), производная dE/дt — это то же самое, что и iwE, a дЕ/дх — то же, что и ikxE, и аналогично для остальных компо­нент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция С=(д/дx), (д/ду), (д/дz) заменяется тремя умножениями (-ikx,-iky , -ikz). Но эти три множителя преобразуются как компоненты вектора k, так что оператор С заменяется умножением на

Фейнмановские лекции по физике. 7. Физика сплошных сред - _112.jpg

Правило остается справедливым для операции С в любой ком­бинации, будь то градиент, дивергенция или ротор. Например, z-компонента СXЕ равна

1 ... 14 15 16 17 18 19 20 21 22 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название