Фейнмановские лекции по физике. 8. Квантовая механика I

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 8. Квантовая механика I, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 8. Квантовая механика I
Название: Фейнмановские лекции по физике. 8. Квантовая механика I
Дата добавления: 15 январь 2020
Количество просмотров: 369
Читать онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I читать книгу онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 15 16 17 18 19 20 21 22 23 ... 37 ВПЕРЕД
Перейти на страницу:

Вам может захотеться увидать, как действуют квантовомеханические преобразования, и самим попробовать их проде­лать; для этого мы приведем здесь без вывода матрицы преобра­зований амплитуд спина 1 от представления S к другому пред­ставлению Т для разных взаимных ориентации фильтров S и Т. (В следующих главах мы покажем, как получаются эти результаты.)

Первый случай. У прибора Т ось у (вдоль которой дви­жутся частицы) та же самая, что и у S, но Т повернут вокруг общей оси у на угол а (на фиг. 3.6). (Чтобы быть точными, ука­жем, что в приборе Т установлена система координат х' , у', z', связанная с координатами х, у, z прибора S формулами z'=zcosa+хsina; х'=хcosa- zsina; у' = у.) Тогда ам­плитуды преобразований таковы:

Фейнмановские лекции по физике. 8. Квантовая механика I - _161.jpg
(3.38)

Второй случай. Прибор Т имеет ту же ось г, что и S, но повернут относительно оси z на угол b. (Преобразование координат: z'=z; х' =xcosb+ysinb; у'=уcosb- хsinb.) Тогда амплитуды преобразований суть

Фейнмановские лекции по физике. 8. Квантовая механика I - _162.jpg
(3.39)

Заметьте, что любые вращения Т можно составить из опи­санных двух вращений.

Если состояние j определяется тремя числами

Фейнмановские лекции по физике. 8. Квантовая механика I - _163.jpg

и если то же состояние описывается с точки зрения Т тремя числами

Фейнмановские лекции по физике. 8. Квантовая механика I - _164.jpg

тогда коэффициенты <jT| iS>из (3.38) и (3.39) дают преоб­разования, связывающие Сi и С'i. Иными словами. С; очень походят на компоненты вектора, который с точек зрения S и Т выглядит по-разному.

Только у частицы со спином 1 (потому что ей требуются как раз три амплитуды) есть такое тесное соответствие с векторами. Здесь во всех случаях имеется тройка чисел, которая обязана преобразовываться при изменениях координат определенным известным образом. И действительно, здесь есть и такая сово­купность базисных состояний, которая преобразуется в точ­ности, как три компоненты вектора. Три комбинации

Фейнмановские лекции по физике. 8. Квантовая механика I - _165.jpg

преобразуются в С'х, С'у, С'zкак раз так же, как х, у, z преобра­зуются в х', у', z' . [Вы можете проверить это с помощью законов преобразований (3.38) и (3.39).] Теперь вы понимаете, почему частицу со спином 1 часто называют «векторной частицей».

§ 8. Другие случаи

Мы начали с того, что подчеркнули, что наши рассуждения о частице со спином 1 явятся прототипом любых квантовомеханических задач. Обобщения требует только количество состояний. Вместо тройки базисных состояний в других случаях может потребоваться n базисных состояний. Форма наших основных законов (3.27) останется той же, если только понимать, что i и j должны пробегать по всем n базисным состояниям. Любое явление можно проанализировать, задав амплитуды того, что оно начинается с любого базисного состояния и кончается тоже в любом базисном состоянии, а затем просуммировав по всей полной системе базисных состояний. Можно использовать лю­бую подходящую систему базисных состояний, и каждый впра­ве выбрать ту, которая ему по душе; связь между любой парой базисов осуществляется матрицей преобразований nXn. Позже мы подробнее расскажем об этих преобразованиях.

Наконец, мы пообещали рассказать о том, что надо делать, если атомы прямо из печи проходят через какой-то прибор А и затем анализируются фильтром, который отбирает состояние c. Вы не знаете, каково то состояние j, в котором они входят в прибор. Лучше всего, наверное, было бы, если бы вы, не думая пока об этой проблеме, занимались такими задачами, в ко­торых вначале имеются только чистые состояния. Но если уж вы на этом настаиваете, так вот как расправляются с этой про­блемой.

Прежде всего вы должны быть в состоянии сделать разумные предположения о том, каким образом распределены состояния в атомах, которые выходят из печи. Например, если в печи нет чего-либо «особого», то разумно предположить, что атомы по­кидают печь, будучи «ориентированы» как попало. Квантовомеханически это соответствует вашему утверждению о том, что о состояниях вы не знаете ничего, кроме того, что треть ато­мов находится в состоянии (+S), треть — в состоянии (0S) и треть — в состоянии (-S). Для пребывающих в состоянии (+S) амплитуда пройти сквозь А есть <c|А|+S>, а вероят­ность |<c|А|+S>|2. То же и для других. Общая вероят­ность тогда равна

Фейнмановские лекции по физике. 8. Квантовая механика I - _166.jpg

Но почему мы пользовались S, а не Т или каким-нибудь другим представлением? Дело в том, что, как это ни странно, ответ не зависит от того, каким было исходное разложение; он один и тот же, если только мы имеем дело с совершенно случайными ориентациями. Таким же образом получается, что

Фейнмановские лекции по физике. 8. Квантовая механика I - _167.jpg

для любого c. (Докажите-ка это сами!)

Заметьте, что неверно говорить, будто входные состояния обладают амплитудой Ц1/3быть в состоянии (+S), Ц1/3 в состоянии (0S)и Ц1/3в состоянии (-S); если бы это было так, были бы допустимы какие-то интерференции. Здесь вы просто не знаете, каково начальное состояние; вы обязаны думать на языке вероятностей, что система сперва находится во всевоз­можных мыслимых начальных состояниях, и затем взять средне­взвешенное по всем возможностям.

* Число базисных состояний n может оказаться (и, вообще говоря, бывает) равным бесконечности.

* И в самом деле, для атомных систем с тремя или более базисными состояниями существуют другие типы фильтров (совершенно непохожие на приборы Штерна —Герлаха), которые можно было бы употребить для выбора других совокупностей базисных состояний (но при том же общем иx числе).

* Из этого опыта мы на самом деле не можем заключить, что а= 1, а видим только, что |а|2=1, следовательно, а может быть eid, но можно показать, что при выборе d=0 мы ничего существенного здесь не по­теряли.

* На языке наших прежних обозначений

Фейнмановские лекции по физике. 8. Квантовая механика I - _168.jpg

* Мы не собираемся вкладывать в слова «базисное состояние» что-либо сверх того, что здесь сказано. Не следует переводить «базис» как «основу» и хоть в каком-то смысле считать их «основными состояниями». Слово «базис» понимается как «система описания», скажем, в таком смыс­ле, как в выражении «число в десятичной системе».

* Произносить надо так: (+S)—«плюс-S»; (0S) — «нуль-S»; (-S)— «минус-S».

 

 

Глава 4

СПИН ОДНА ВТОРАЯ

§ 1. Преобразование амплитуд

§ 2. Преобразование к повернутой системе координат

§ 3. Повороты вокруг оси z

§ 4. Повороты на 180° и на 90 вокруг оси у

§ 5. Повороты вокруг оси x

§ б. Произвольные повороты

1 ... 15 16 17 18 19 20 21 22 23 ... 37 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название