Фейнмановские лекции по физике. 8. Квантовая механика I

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 8. Квантовая механика I, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 8. Квантовая механика I
Название: Фейнмановские лекции по физике. 8. Квантовая механика I
Дата добавления: 15 январь 2020
Количество просмотров: 369
Читать онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I читать книгу онлайн

Фейнмановские лекции по физике. 8. Квантовая механика I - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 11 12 13 14 15 16 17 18 19 ... 37 ВПЕРЕД
Перейти на страницу:

Второй повернут, относительно первого на угол a.

Такой при­бор мы обозначим буквой Т. Пусть мы теперь предприняли следующий опыт:

Фейнмановские лекции по физике. 8. Квантовая механика I - _114.jpg

или такой опыт:

Фейнмановские лекции по физике. 8. Квантовая механика I - _115.jpg

Что в этих случаях выйдет из дальнего конца?

Ответ таков. Если атомы по отношению к S находятся в опре­деленном состоянии, то по отношению к Т они не находятся в том же состоянии, состояние (+S) не является также и состоя­нием (+T). Однако имеется определенная амплитуда обна­ружить атом в состоянии (+Т), или в состоянии (О Т), или в состоянии (-Т).

Иными словами, как бы досконально мы ни убедились, что наши атомы находятся в определенном состоянии, факт остается фактом, что, когда такой атом проходит через прибор, наклоненный под другим углом, он вынужден, так сказать, «переориентироваться» (что происходит, не забывайте, по зако­нам случая). Если пропускать в каждый момент по одной части­це, то вопрос можно будет ставить только таким образом: какова вероятность того, что она пройдет насквозь? Некоторые прошед­шие сквозь S атомы очутятся в конце в состоянии (+Т), дру­гие — в состоянии (0Т), третьи — в состоянии (-Т), и каж­дому состоянию отвечает своя вероятность. Эти вероятности можно вычислить, зная квадраты модулей комплексных ампли­туд; нам нужен математический метод для этих амплитуд, их квантовомеханическое описание. Нам нужно знать, чему равны различные величины типа

<-T+S>;

под этими выражениями мы подразумеваем амплитуду того, что атом, первоначально бывший в состоянии (+S), может перейти в состояние (-Т) (что не равно нулю, если только S и Г не параллельны друг другу). Имеются и другие амплитуды, например

<+T|0S> или <0T|-S> и т. д.

Таких амплитуд на самом деле девять — это тоже матрица, и теория должна сообщить нам, как их вычислять. Подобно тому как F = ma сообщает нам, как подсчитать, что бывает в любых обстоятельствах с классической частицей, точно так же и законы квантовой механики позволяют нам определять ам­плитуду того, что частица пройдет через такой-то прибор. Центральный вопрос тогда заключается в том, как сосчитать для каждого данного угла а или вообще для какой угодно ориен­тации девять амплитуд:

Фейнмановские лекции по физике. 8. Квантовая механика I - _116.jpg

Некоторые соотношения между этими амплитудами мы сразу можем себе представить. Во-первых, согласно нашим определениям, квадрат модуля

Фейнмановские лекции по физике. 8. Квантовая механика I - _117.jpg

— это вероятность того, что атом, бывший в состоянии ( +S), придет в состояние (). Такие квадраты удобнее писать в эквивалентном виде

Фейнмановские лекции по физике. 8. Квантовая механика I - _118.jpg

В тех же обозначениях число

Фейнмановские лекции по физике. 8. Квантовая механика I - _119.jpg

дает вероятность того, что частица в состоянии (+S) перей­дет в состояние (0T), а

Фейнмановские лекции по физике. 8. Квантовая механика I - _120.jpg

— вероятность того, что она перейдет в состояние (-Т). Но наши приборы устроены так, что каждый атом, входящий в прибор Т, должен быть найден в каком-то одном из трех со­стояний прибора Т',— атомам данного сорта нет других путей. Стало быть, сумма трех только что написанных вероятностей должна равняться единице. Получается соотношение

Фейнмановские лекции по физике. 8. Квантовая механика I - _121.jpg

Имеются, конечно, еще два таких же уравнения для случаев, когда вначале было состояние (0S) или (-S). Их очень легко написать, так что мы переходим к другим общим вопросам.

§ 3. Последовательно соединенные фильтры Штерна — Герлаха

Пусть у нас есть атомы, отфильтрованные в состояние (+S), которые мы затем пропустили через второй фильтр, переведя, скажем, в состояние (О Т), а затем — через другой фильтр (+S). (Обозначим его S', чтобы не путать с первым фильтром S.) Вспомнят ли атомы, что они уже раз были в со­стоянии (+S)? Иначе говоря, мы ставим такой опыт:

Фейнмановские лекции по физике. 8. Квантовая механика I - _122.jpg

и хотим знать, все ли атомы, прошедшие сквозь Т, пройдут и сквозь S'. Нет. Как только они пройдут фильтр Т, они сразу же позабудут о том, что, входя в Т, они были в состоянии (+S). Заметьте, что второй прибор S в (3.11) ориентирован в точности так же, как первый, так что это по-прежнему фильтр типа S. Состояния, выделяемые фильтром S',— это, конечно, все те же (+S), (0S) и (-S).

Здесь существенно вот что: если фильтр Т пропускает толь­ко один пучок, то та доля, пучка, которая проходит через второй фильтр S, зависит только от расположения фильтра Т и совер­шенно не зависит от того, что было перед ним. Тот факт, что те же самые атомы однажды уже были отсортированы фильтром S, никак и ни в чем не влияет на то, что они будут делать после того, как прибор Т снова отсортирует их в чистый пучок. От­сюда следует, что вероятность перейти в те или иные состояния для них одна и та же безотносительно к тому, что с ними слу­чалось до того, как они угодили в прибор Т, Для примера сравним опыт (3.11) с опытом

Фейнмановские лекции по физике. 8. Квантовая механика I - _123.jpg

в котором изменилось только первое S. Пусть, скажем, угол a (между S и Т) таков, что в опыте (3.11) треть атомов, прошед­ших сквозь Т, прошла также и через S'. В опыте (3.12), хоть в нем, вообще говоря, через Т пройдет другое число атомов, но через S' пройдет та же самая, часть их — одна треть.

Мы можем на самом деле показать, опираясь на то, чему мы научились раньше, что доля атомов, которые выходят из Т и проходят через произвольный определенный фильтр S', зависит лишь от Т и S', а не от чего бы то ни было происходившего ра­нее. Сравним опыт (3.12) с

Фейнмановские лекции по физике. 8. Квантовая механика I - _124.jpg

Амплитуда того, что атом, выходящий из S, пройдет и сквозь Т, и сквозь 6", в опыте (3.12) равна

<+S|0T><0T|0S>.

Соответствующая вероятность такова:

Фейнмановские лекции по физике. 8. Квантовая механика I - _125.jpg

а вероятность в опыте (3.13)

Фейнмановские лекции по физике. 8. Квантовая механика I - _126.jpg

Их отношение

Фейнмановские лекции по физике. 8. Квантовая механика I - _127.jpg

зависит только от Т и S' и совсем не зависит от того, какой пу­чок (+S), (0S) или (-S) был отобран в S. (Абсолютные же количества могут быть большими или меньшими, смотря по тому, сколько прошло через Т.) Мы бы получили, конечно, аналогичный результат, если бы сравнили вероятности того, что атомы перейдут в плюс- или минус-состояние (по отноше­нию к S'), или отношения вероятностей перейти в нуль- или минус-состояние.

Но раз эти отношения зависят только от того, какой пучок может пройти сквозь Т, а не от отбора, выполненного первым фильтром S, то становится ясно, что тот же результат получил­ся бы, если бы последний прибор даже не был фильтром S. Если в качестве третьего прибора (назовем его R) мы используем прибор, повернутый относительно Т на некоторый произволь­ный угол, то все равно увидим, что отношения типа

Фейнмановские лекции по физике. 8. Квантовая механика I - _128.jpg

1 ... 11 12 13 14 15 16 17 18 19 ... 37 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название