-->

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Название: Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Дата добавления: 15 январь 2020
Количество просмотров: 154
Читать онлайн

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук читать книгу онлайн

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 40 ВПЕРЕД
Перейти на страницу:

Мы разбили первоначальное слагаемое на два и должны усред­нить их оба. Посмотрим, чему же равно произведение х на скорость. Это произведение не изменяется со временем, потому что, когда частица попадает в заданную точку, она уже не помнит, где она была раньше, и характеризующие такие си­туации величины не должны зависеть от времени. Поэтому среднее значение этой величины равно нулю. У нас осталось лишь mv2, а об этой величине нам кое-что известно: среднее значение mv2/2 равно 1/2 kT. Следовательно, мы установили,

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _52.jpg

что

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _53.jpg

влечет за собой

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - _54.jpg

или

Это значит, что средний квадрат радиус-вектора частицы <R2> к моменту t равен

<R2>=2kTt/m. (41.21)

Таким образом, мы и в самом деле можем выяснить, как далеко уйдут частицы! Сначала нужно изучить реакцию частицы на постоянную силу, выяснить скорость дрейфа частицы под действием известной силы (чтобы определить m), а тогда мы сможем узнать, далеко ли расползутся беспорядочно движу­щиеся частицы. Полученное нами уравнение имеет большую историческую ценность, потому что на нем основан один из первых способов определения постоянной k. Ведь в конце концов можно измерить величину m, и время, определить расстояние, на которое удалится частица, и получить средние значения. Почему так важно определить точное значение k? Потому что по закону PV=RT для моля можно измерить R, которое равно произведению числа атомов в моле на k. Моль когда-то определялся как столько-то граммов кислорода 16 (теперь для этой цели используют углерод), поэтому числа атомов в моле сначала не знали. Это, конечно, интересный и важный вопрос. Каковы размеры атомов? Много ли их? Таким образом, одно из самых ранних определений числа атомов свелось к определению того, далеко ли уйдут мельчайшие соринки, пока мы будем терпеливо разглядывать их в микроскоп в течение строго определенного времени. После этого можно было найти и постоянную Больцмана k, и число Авогадро N0, потому что R к этому времени было уже измерено.

 

 

Глава 42

ПРИМЕНЕНИЯ КИНЕТИЧЕСКОЙ ТЕОРИИ

§ 1. Испарение

§ 2. Термоионная эмиссия

§ 3. Тепловая ионизация

§ 4. Химическая кинетика

§ 5. Законы излучения Эйнштейна

§ 1. Испарение

Эта глава посвящена дальнейшим приме­нениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или любого другого объекта равна 1/2 kT. Сейчас централь­ным пунктом нашего изложения будет утверж­дение о том, что отнесенная к единице объема вероятность обнаружить частицу в том или ином месте пропорциональна ехр(-п.э./kT). (Это утверждение мы используем в ряде задач.)

Явления, которые мы собираемся изучить, довольно сложны: испарение жидкости, вылет электронов с поверхности металла или хими­ческая реакция, в которой участвует много атомов. В таких случаях кинетическая теория не дает простых и точных предписаний, ситуа­ция слишком сложна для этого. Поэтому вы­воды этой главы, за исключением особо огово­ренных, весьма неточны. Мы только подчерк­нем, что, исходя из кинетической теории, можно более или менее хорошо понять эти явления. Но гораздо более точное представ­ление о них дают термодинамические аргументы или некоторые измерения отдельных критиче­ских величин.

Однако полезно знать, хотя бы очень прибли­зительно, почему то, что происходит, проис­ходит именно так. Тогда, натолкнувшись на явление, которое содержит в себе нечто, чего мы еще не видели, или то, что проанализиро­вать мы еще не собрались, мы, может быть, сможем более или менее точно сказать, что произошло. Такой анализ будет в высшей степени неточным, но в общих чертах верным — верным по сути, но чуть-чуть упрощенным, скажем, в некото­рых тонких деталях.

Разберем первый пример — испарение жидкости. Предпо­ложим, что большой ящик при заданной температуре заполнен жидкостью и паром поровну. Будем считать, что средние рас­стояния между молекулами пара довольно велики, а вот в жидкости они упакованы плотно. Задача состоит в том, что­бы определить число молекул, находящихся в газовой фазе, по сравнению с числом молекул, находящихся в жидкости. Какова плотность пара при заданной температуре и как она зависит от температуры?

Пусть n — число молекул пара в единице объема. Это число, естественно, меняется с температурой. С притоком тепла испарение увеличивается. Добавим еще одну величину 1/Va, равную числу атомов в единице объема, содержащихся в жидкости; мы предполагаем, что в жидкости каждой молекуле отведен вполне определенный объем, поэтому чем больше в жидкости молекул, тем больший объем они занимают. Если Vaобъем, отведенный одной молекуле, то число молекул в еди­ничном объеме равно единичному объему, деленному на объем, занимаемый молекулой. Далее, предположим, что между мо­лекулами действуют силы притяжения, удерживающие их внутри жидкости. Иначе нельзя понять, почему происходит конденсация. Итак, предположим, что имеется сила притяже­ния и существует энергия связи молекулы в жидкости, которая теряется при переходе молекул в пар. Это наводит на мысль, что для перевода какой-нибудь молекулы из жидкости в пар, нужно совершить работу W. Существует определенная раз­ность W между энергией молекулы в жидкости и ее энергией в паре, потому что для переноса молекул в пар мы должны оторвать ее от всех молекул, к которым она притягивается.

Теперь обратимся к общему принципу, по которому отно­шение числа атомов в единице объема в разных областях равно n2/n1=ехр[-2-E1/kT)]. Значит, nчисло молекул в еди­ничном объеме пара, деленное на 1/Va(число молекул в еди­ничном объеме жидкости), равно

nVa=e-w/kT. (42.1)

Таково общее правило. Это очень похоже на равновесную ат­мосферу в ноле тяжести, когда низшие слои газа плотнее верх­них, потому что для подъема молекулы на высоту h нужна энергия mgh. В жидкости молекулы размещены плотнее, чем в газе, так как их заставляет 'потесниться энергия «подъема» W, и отношение плотностей равно

ехр(-W/kT).

Это как раз то, что мы хотели вывести — плотность пара из­меняется как е в некоторой степени. Показателем служит взятая со знаком минус похожая на энергию величина, деленная на kT. Множители перед экспонентой не особенно интересны, потому что в большинстве случаев плотность пара гораздо меньше плотности жидкости. При этих обстоятельствах, когда мы далеки от критической точки, где плотности почти одина­ковы, соотношение плотностей, при котором nмного меньше l/Ve, обеспечивается тем, что W много больше kT. Поэтому формулы типа (42.1) интересны только тогда, когда W дейст­вительно гораздо больше kT; в этом случае е возводится в гро­мадную отрицательную степень и если немного изменить Т, то изменится слегка и громадная степень, а это изменение по­влечет за собой такие изменения экспоненты, которые будут гораздо важнее возможных изменений предэкспоненциальных множителей. Но отчего бы изменяться таким множителям, как l/Va? Да оттого, что наше описание приблизительно. Ведь в действительности каждая молекула не имеет определенного объема; при изменении температуры объем Vане остается по­стоянным — жидкости сжимаются и расширяются. Есть еще и другие мелочи вроде этой, так что действительная ситуация гораздо сложнее. Почти всюду стоят медленно изменяющиеся с температурой множители. В действительности само W мед­ленно изменяется с температурой, потому что при разных тем­пературах молекулам отведены разные объемы, и притяжение должно быть разным, и т. д. Итак, можно прийти к выводу, что поскольку у нас получилась формула, в которой все неизвест­ным образом изменяется с температурой, то на самом деле формулы никакой и нет. Но если мы знаем, что показатель у экспоненты W/kT заведомо велик, то можно убедиться, что наибольшие изменения кривой плотности пара как функции температуры обусловлены экспоненциальным множителем. По­этому если мы будем считать W постоянной величиной, а коэф­фициент 1/Va — почти постоянной, то это будет хорошим при­ближением вдоль небольшого интервала нашей кривой. Иначе говоря, основные изменения определяются видом функции ехр(-W/kT),

1 ... 14 15 16 17 18 19 20 21 22 ... 40 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название