Инновационная сложность
Инновационная сложность читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Кинематический синтез – это подбор кинематических пар, звеньев, цепей и механизмов, из которых нужно составить машину, производящую требуемое движение. И хотя Рело не применял математику, развиваемые им представления были весьма «геометричны» (см. рис. 1). Рело пытается построить особую «кинематическую» геометрию, называя ее «чистой кинематикой», описывающую различные приемы решения задач. Если Герои Александрийский рассматривает «комбинации однородных «простых машин» – сочетания по нескольку блоков, воротов и рычагов» и «комбинации неоднородных «простых машин» – сочетания ворот-винт, блок-рычаг-ворот-винт» [345], то у Рело, напротив, речь идет от расчленения сложных машин на составные элементы. То есть задача была сформулирована принципиально иначе, чем в античной механике и науке Нового времени: найти способы разложения сложных машин на части, которые составляют единое целое. В данном случае именно сложность выступает исходным пунктом исследования и проектирования, а не простые машины, из которых потом комбинируются в новые сложные. Такое сведение сложных машин к элементарным простым становится с развитием технической практики не только нецелесообразным, но и невозможным. Это диктует, с одной стороны, инженерная практика, которая, с другой стороны, стимулирует развитие новой технической теории.
Развитие теории механизмов и машин задало образцы рассмотрения сложных технических систем и в других областях техники. Исходным в этом процессе движения к выработке общей теории технических систем были попытки обобщенного описания электрических цепей. Задача их теоретического описания была связана с усложнением инженерных задач по их расчету и проектированию, где оказалось недостаточно тех средств, которые были развиты в классической электродинамике и теории электричества.
Теория электрических цепей имеет дело не с огромным разнообразием конструктивных элементов электротехнической системы, отличающихся своими характеристиками, принципом действия, конструктивным оформлением и т. д., а со сравнительно небольшим количеством идеальных элементов и их соединений, представляющих эти идеальные элементы на теоретическом уровне. К таким элементам относятся, прежде всего, емкость, индуктивность, сопротивление, источники тока и напряжения. Следующим уровнем идеализации в теории электрических цепей стали схемы, отображающие электромагнитный процесс, протекающий в электротехническом устройстве при его функционировании. Сама цепь на них представляется совокупностью элементов и связей, образующих путь для электрического тока, основными параметры которого для синусоидального тока – напряжение, сила, мощность, амплитуда, фаза и частота. Элементы электрической цепи образуют ветви, которые соединяются в узлы и контуры при помощи идеальных электрических связей, т. е. связей, не обладающих сопротивлением, индуктивностью и емкостью, хотя реальные проводники ими, конечно, обладают. Это описание аналогично разложению механизма на элементарные пары. Любой элемент электротехнической цепи рассматривается как идеальный двухполюсник, действие которого на проходящий через него ток описывается линейным уравнением. К таким двухполюсникам относятся линейные пассивные элементы электрической цепи, могущие быть постоянными и переменными, – омическое, индуктивное и емкостное сопротивления, а также идеальный диод, ключевой элемент цепи, проводящий токтолько в одном направлении. Кроме того, в них включаются обязательно активные двухполюсники – идеальные источники тока и идеальные источники напряжения. Несколько сложнее обстоит дело с нелинейными элементами, которые сначала замещаются эквивалентными схемами, содержащими линейные элементы. В данном случае, фактически, продолжается линия, заданная Рело, разложения сложной технической системы на элементы, которая дополняется, также как и в теории механизмов и машин, развитием методов их теоретического синтеза.
В дальнейшем формируются еще более общие для всех видов цепей методы их представления в теории четырехполюсников, которая постепенно становится достаточно абстрактной и уже содержит в себе некоторые черты системных представлений. Эта теория стала основой представления о «черном ящике» в кибернетике, т. е. о системе, изучаемой извне, не интересуясь ее внутренней структурой. Четырехполюсник представляет собой обобщенную систему, имеющую два входа и два выхода, к которой приводятся многочисленные конструктивные идеальные блоки: фильтры, контуры, усилители и т. д. Представление о четырехполюснике вводится для перехода к математическим соотношениям, позволяющим уравнения, составленные на основе законов Кирхгофа (описывают движение тока в контуре с четырехполюсником) представить в матричной форме. Решая данные уравнения с помощью теории матриц можно определить искомые конструктивные параметры четырехполюсников: входное сопротивление, мощность на входе и выходе, вносимое затухание и т. д. В теории четырехполюсников доказывается ряд теорем (обратимости, об эквивалентном генераторе и т. д.), что позволяет не только упростить расчеты, но и синтезировать новые схемы путем дедуктивного эквивалентного преобразования четырехполюсников. Два четырехполюсника называются эквивалентными, если в электрической цепи они вызывают одинаковое действие, т. е. распределение токов и напряжений во внешней цепи, подключаемой к четырехполюснику, не изменяется при замене одного четырехполюсника другим. При анализе сложных электрических схем их предварительно преобразуют в соединение более простых четырехполюсников, параметры которых берутся из специальных таблиц. Затем по матрицам каждого из них производятся математические операции над ними в зависимости от типа соединения. Такое преобразование позволяет найти наиболее экономичные и эффективные инженерные решения.
Таким образом, уже в теории электрических цепей наметилось обобщение, приведшее к выработки системного представления сложных технических систем.
К середине двадцатого столетия в теории цепей формируется новый этап, связанный с междисциплинарным исследованием различных типов цепей не только электрических и кинематических, но и гидравлических, пневматических и т. п. В результате такого расширения области исследования происходит обмен методами и представлениями различных дисциплин, их изучающих, и обобщение этих технических теорий в теории автоматического регулирования (следящих систем). Первоначально все они исследовались и рассчитывались по-разному. Однако постепенно формируются общие методы расчета, анализа и синтеза следящих систем. Классическая теория цепей стала постепенно областью науки, которая отходит от анализа и синтеза лишь электрических цепей, содержащих стандартные элементы, превращаясь в специализированный раздел знания более широкой научной дисциплины – теории систем. Главным здесь является математические соотношения между переменными, описывающими поведение системы (см. рис. 2).
Рис. 2. Таблица соответствия, механических, электрических и гидравлических регуляторных цепей [346]
Развитие системного подхода и системных представлений в области технических наук происходило за счет обобщения теоретических описаний объекта их исследования и проектирования при переходе от относительно простых технических систем к сложным системных комплексам.
Основное значение системотехники заключается в повышении эффективности инженерного труда, который реализуется большими коллективами специалистов различного профиля. Системотехника представляет собой особую деятельность по созданию сложных технических систем и в этом смысле является прежде всего современным видом инженерной, технической деятельности, но в то же время включает в себя и научную деятельность, поскольку является не только сферой приложения научных знаний. Над созданием проектов противовоздушной обороны, коммуникационных, энергетических, ирригационных систем, градостроительных и производственных комплексов, автоматизированных систем управления трудится целая сеть институтов, насчитывающих сотни высококвалифицированных специалистов. Особое значение в ней приобретает деятельность, направленная на организацию, научно-техническую координацию и руководство всеми видами системотехнической деятельности: с одной стороны, это – проектирование компонентов, конструирование, отладка, разработка технологии, а с другой – радиоэлектроника, химическая технология, инженерная экономика, разработка средств общения человека и машины и т. п. Системотехника возникла в результате усложнения процесса инженерного проектирования, необходимости его рациональной и научной организации. Но главная ее задача – стыковка и интеграция частей проектируемой системы в единое целое (рис. 3). Наряду с прогрессирующей дифференциацией инженерной деятельности по различным ее отраслям и видам, нарастает процесс ее интеграции. А для осуществления такой интеграции требуются особые специалисты – инженеры-системотехники. В системотехнике сама инженерная деятельность становится объектом планирования, организации и проектирования и должна поэтому также рассматриваться как особая система. Иначе говоря, большие системные проекты требуют организации и управления, а значит системного представления и описания самой системотехнической деятельности.