-->

Квантовая хромодинамика: Введение в теорию кварков и глюонов

На нашем литературном портале можно бесплатно читать книгу Квантовая хромодинамика: Введение в теорию кварков и глюонов, Индурайн Франсиско Хосе-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Квантовая хромодинамика: Введение в теорию кварков и глюонов
Название: Квантовая хромодинамика: Введение в теорию кварков и глюонов
Дата добавления: 16 январь 2020
Количество просмотров: 240
Читать онлайн

Квантовая хромодинамика: Введение в теорию кварков и глюонов читать книгу онлайн

Квантовая хромодинамика: Введение в теорию кварков и глюонов - читать бесплатно онлайн , автор Индурайн Франсиско Хосе

Книга испанского физика Ф. Индурайна представляет собой курс современной теории сильных взаимодействий — квантовой хромодинамики. Она содержит практически весь основной материал, необходимый для ознакомления с важнейшими результатами, полученными в рамках пертурбативной КХД, и овладения вычислительными методами теории. Материал изложен с приведением всех промежуточных выкладок и с большим педагогическим мастерством, что позволяет использовать книгу в качестве учебного или справочного пособия. Книга предназначена для научных работников, студентов и аспирантов физических факультетов, специализирующихся в области физики элементарных частиц.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 21 22 23 24 25 26 27 28 29 ... 122 ВПЕРЕД
Перейти на страницу:

14a Калибровка Ландау удобна а теории, описывающей базмассовые частицы. В этой калибровке на только перенормировочный множитель ZF конечен, но и массовый оператор Σ(2) равен нулю.

В квантовой электродинамике существует естественная перенормировочная схема; в ней электроны и фотоны выбираются на массовой поверхности (т.е. электронный пропагатор S задается в точке р̅2=m2, а фотонный D - при q̅2=0). Поскольку в КХД, по-видимому, происходит удержание кварков и глюонов, в ней не существует столь же естественного способа выбора схемы перенормировки. Следовательно, имеется определенный произвол в выборе перенормировочной схемы который может быть использован для того, чтобы максимально упростить вычисления. Этим требованиям удовлетворяет схема минимального вычитания, к обсуждению которой мы переходим.

2. Схема минимального вычитания

Как заметил т’Хофт [249], простейший способ исключения расходимостей из функций Грина состоит в отбрасывании полюсов по параметру 1/ε, появляющихся в размерной регуляризации (минимальное вычитание MS). Впоследствии было показано [29], что эти полюса всегда появляются в комбинации

N

ε

=

2

 - γ

E

+ log4π.

ε

(9.15)

Следовательно, если отбросить только член 2/ε, то остаются трансцендентные величины γE, log 4π. Напомним, что зти величины возникают в результате обобщения проводимых вычислений на случай пространства произвольной размерности D=4-ε, что находит свое отражение в членах вида

(4π)ε/2Γ(ε/2)=Nε+O(ε)

Кажется вполне естественным отбросить и эти трансцендентные слагаемые. Это требование приводит к модифицированной схеме минимального вычитания (в дальнейшем обозначаемой MS, в которой множитель Nε исключается полностью15). В рамках этой схемы находим следующие выражения для перенормировочных множителей:

15) Схема MS может быть сведена к схеме MS заменой выражения dDk̂=ν4-D0 × dDk/(2π)D на выражение dDk̂={ν4-d0/(2π)D} / {(4π)(4-D)/2Γ(3-D/2)}.

Z

 

=1 - C

 

α

g

(1-ξ)N

ε

,

F

F

(9.16)

Z

 

=1 - C

g

 N

ε

.

m

(9.17)

Мы будем пользоваться в основном схемой MS, поэтому черту над перенормировочными множителями Z, относящимися к этой схеме, в дальнейшем будем опускать. (В схеме MS множитель Zm не зависит от калибровки. В двухпетлевом приближении это проверено в работе [242], но результат, по-видимому, справедлив во всех порядках теории возмущений вследствие калибровочной независимости массового члена mqq .) Из выражений (9.16) и (9.17) видно, что, определив коэффициент с выражением C=cNε можно написать

c

(1)

= - C

F

(1-ξ) ,

F

(9.18)

c

(1)

= - 3C

F

m

(9.19)

Эти вычисления были проведены во втором порядке теории возмущений 16).

16) Вычисления были проведены Нанолулосом и Россом [208]; Таррач [242] проверил их и исправил тривиальную ошибку, допущенную в оригинальной работе [208].

Вычислим теперь в схеме MS другие перенормировочные константы. Начнем с глюонного пропагатора. Поперечная часть глюонного пропагатора записывается в виде

D

μν

(q,g

u

,m

u

u

)

utr;ab

=

i

-g

μν

+q

μ

q

ν

/q

2

δ

ab

q

2

+

-g

μμ'

+q

u

q

μ'

/q

2

δ

 

Π

a'b'

δ

 

q

2

aa'

μ'ν'

b'b

×

i

-g

ν'ν

+q

ν'

q

ν

/q

2

+ … .

2

(9.20)

В этом выражении во втором порядке теории возмущений не требуется проведения перенормировки константы связи, калибровочного параметра или массы.

Квантовая хромодинамика: Введение в теорию кварков и глюонов - _6.jpg

Рис. 6. Глюонный пропагатор.

Часть поляризационного оператора Π, обусловленная вкладами ду́хов и глюонов (рис. 6, а), вычислена выше (выражение (5.9)16a). Часть оператора Π, возникающая от вклада кварковой петли (рис. 6, б), для кварка каждого аромата ƒ записывается в виде

16a) Выражение (5.9) получено без учета множителя ν4-D0. Если учесть его, то единственное изменение заключается в замене log(-q2) на log(-q220).

Π

μν

=

ig

2

t

a

t

b

d

D

k

ν

4-D 

Tr(

k

+m

ƒ

μ

(

k

+

q

+m

ƒ

ν

.

ƒquark;ab

ij

ij

(2π)

D

0

(k

2

-m

2

ƒ

)[(k+q)-m

2

ƒ

]

 

 

 

 

ij

Вычисление этого выражения проводится стандартными методами. За исключением множителя Tr tatb, результат совпадает с хорошо известным из КЭД выражением для фотонного поляризационного оператора. Если через nƒ обозначить полное число ароматов кварков, то результат имеет вид

Π

μν

all quarks;ab

=

δ

ab

-2T

F

g

2

(-g

1 ... 21 22 23 24 25 26 27 28 29 ... 122 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название