Охотники за частицами
Охотники за частицами читать книгу онлайн
В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы.
Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах. Гигантские ускорители частиц до энергий в десятки миллионов электрон-вольт, хитроумные ловушки для частиц — таков арсенал оружия современных «охотников».
В этой книге читатели познакомятся с историей открытия всех элементарных частиц, начиная с открытия электрона в 1896 году и кончая открытием омега-гиперона в 1964 году. Большое внимание уделено описанию современных теоретических представлений о мире сверхмалых частиц.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В том-то и состоит великий подвиг физиков современности, что они первыми создали совершенно необычные представления. Что они организовали у себя в головах новый мир — отражение того мира, что скрыт в глубинах вещей, и сумели путешествовать и открывать новые земли в этом мире.
Последуем за ними в этом необычайном путешествии.
Уже позади время первых робких попыток проникнуть в новый, атомный мир. Теперь, к середине двадцатых годов нашего века, существует квантовая механика. Попытки отдельных смельчаков мысли сменяются большими, хорошо оснащенными экспедициями целых научных коллективов.
Появляются тончайшие, фантастически чувствительные физические приборы. О таких приборах и мечтать не могли ученые каких-нибудь полвека назад. В распоряжение физиков поступают счетчики частиц, камеры, снабженные стереофотоаппаратами, толстые слои фотоэмульсий, богатая радиотехническая аппаратура.
Но, вступая в незнакомый мир, прежде всего надо посмотреть, как в нем будут вести себя измерительные приборы, не будут ли они давать неточных показаний, а то и попросту врать.
Наука того времени знает уже немало сенсационных «открытий», родившихся из ошибочных показаний приборов, или, что еще хуже, из неверного истолкования результатов измерений.
Оправданы ли подобные опасения теперешних путешественников? Для этого, видимо, есть основания. Любой, даже самый крошечный прибор должен вести себя в мире атомов, как слон в муравейнике. Слишком несоизмеримы масштабы двух миров: того, в котором проводят измерения, и того, который хотят измерить.
Но одних догадок мало. Нужен еще убедительный ход мысли, заканчивающийся точным расчетом. Этот расчет выполняет в 1927 году один из зачинателей квантовой механики немецкий физик Вернер Гейзенберг.
Послушаем, что он говорит. И представим это в виде беседы ученого с измерительным прибором. Пусть нас не смущает то, что такую сценку не поставят на подмостках театра: уж очень она похожа на знаменитый чеховский «Разговор человека с собакой». На самом же деле — это мысленный диалог ученого.
Ученый (прибору). Вот тебе задание. Пристройся к опыту по дифракции электронов на кристалле. Там электрон почему-то отказывается подчиняться старым классическим законам. Выбери себе электрон, измерь траекторию его полета и определи, так ли это.
Прибор (возвращаясь). Я сходил посоветоваться к старичку микроскопу. Ведь перед ним ставятся подобные задачи. Правда, не на электронах, а на бактериях, пылинках: они гораздо крупнее. Но все равно, сказал он мне, законы наблюдения общие. Чтобы увидеть какой-либо предмет, его надо осветить. В кромешной тьме ничего не увидишь. Да еще надо знать, чем освещать.
Ученый. Правильно. Длина волн для освещения должна быть по крайней мере того же порядка, что и размеры наблюдаемого предмета. Тогда можно будет увидеть его изображение. А чтобы получить совсем четкое изображение, надо взять свет с еще меньшей длиной волны.
Прибор. Вот-вот. Микроскоп и сказал мне, что в этом его трагедия. Он может использовать только видимый свет, самые короткие волны в котором имеют длину около трети микрона. А, скажем, вирусы в десятки раз меньших размеров он вовсе не в состоянии увидеть. «Вам, молодым, дорога, — сказал он мне. — Я уже свое отслужил. В атомном мире, говорит, делать мне нечего».
Ученый. Действительно, он прав.
Прибор. А какой размер электрона?
Ученый. Точно не известно. Лет двадцать назад подсчитали по классической физике и получили что-то вроде десятитриллионных долей сантиметра.
Прибор. Ого! Еще в миллиард раз меньше, чем размеры микробов! Чем же его освещать? О свете и речи нет. Даже рентгеновы лучи и те безнадежно длинны.
Ученый. А ты возьми еще более короткие — гамма-лучи. Правда, у известных мне сейчас гамма-лучей длина волны все еще несколько больше размеров электрона. Ну ничего, получи хоть нечеткое изображение, и того достаточно. Итак, действуй.
Прибор (удаляется и возвращается некоторое время спустя). Послушайте, у меня ничего не вышло! Нашел я себе электрон, осветил его гамма-фотоном и попробовал определить его движение. Не тут-то было: электрон исчез! Второй раз попробовал — и опять та же незадача. Так ничего и не определил.
Ученый. Извини. Я поручил тебе невыполнимую задачу. Пока ты пытался что-то измерить, я раздумывал. Вот смотри.
Зачем ты берешь гамма-лучи? Чтобы определить положение электрона с достаточной точностью, скажем, порядка его собственных размеров.
Но когда ты бросаешь гамма-фотоны на электрон, то это смахивает на стрельбу из пушек по летящим воробьям! Да-да, не удивляйся. Давай подсчитаем импульс нашего электрона, то есть произведение его массы на скорость полета. Возьмем для наглядности очень быстро летящий электрон, скажем, со скоростью 100 000 километров в секунду. Тогда получим, что импульс электрона — что-то около 10–17 граммов на сантиметр в секунду. А для наших с тобой гамма-фотонов импульс в добрую тысячу раз больше.
Действительно, из пушки мощным снарядом по ничтожному воробью. Стоит ли удивляться, что такой зверь — фотон — начисто смел электрон со своего пути!
Прибор. Понимаю. Но как же быть? Я могу взять не такие могучие фотоны. Скажем, такие, чтобы их импульс был меньше, чем у нашего электрона.
Ученый. Можешь. Но подумай, какая длина волны отвечает этим фотонам? Ведь чем меньше импульс фотона, тем больше его длина. В твоем случае — не много, не мало, как в десятки тысяч раз больше размеров электрона! Теперь ты незначительно повлияешь на движение электрона, сможешь даже более или менее точно определить его скорость. Но положение, траектория электрона останутся для тебя полной загадкой.
Прибор. А микроскоп еще говорил: молодым дорога. Выходит, что я еще беспомощнее, чем он! Может быть, есть все-таки какой-нибудь выход?
Ученый Вернер Гейзенберг говорит: выхода нет. Любой прибор слишком груб в мире сверхмалых частиц, слишком неуклюже и сильно вмешивается в явления, протекающие в этом мире.
А Нильс Бор, поразмыслив, обобщает это высказывание. Он утверждает, что с помощью любых приборов мы с достаточной точностью в каждом из опытов можем узнать только об одной стороне атомного мира. Конкретнее: в каждом опыте можно определить, например, либо только местоположение, либо только скорость электрона. Положение и скорость электрона оказываются как бы исключающими и дополняющими друг друга величинами. Дополняющими до того полного описания, которое дает (конечно, куда более крупным предметам) старая классическая физика.
Все физические свойства частиц можно разбить на два класса, дополняющие друг друга. Но эти классы — как бы две стороны одной медали. Никогда не удастся одновременно увидеть обе стороны медали.
Да, мир сверхмалых частиц двулик. Но он являет каждый из своих ликов порознь в разного рода опытах, в разных явлениях.
И в этом виноват прибор, заявили Гейзенберг и Бор. Этот слон слишком груб, чтобы с его помощью можно было изучать тонкие детали атомного муравейника. А сделать прибор достаточно тонким, чтобы он не разгонял «муравьев», человек не может.
Значит, выхода нет: мир микрочастиц для нас принципиально точно не познаваем? Очень грустный вывод.
Получается, что есть предел могуществу человеческого знания. И находится этот предел не в бескрайних просторах Вселенной, а вот здесь, у нас под руками, и даже в нас самих.
Правилен ли такой вывод? Правильно ли обвинять приборы или электрон, ускользающий от точного измерения приборами? Ученые задумались. И некоторые из них пришли к другим выводам.
Они сказали: зачем обвинять приборы в недостаточном могуществе или электроны в непознаваемости? Более разумным было бы обвинять самих себя!