Охотники за частицами
Охотники за частицами читать книгу онлайн
В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы.
Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах. Гигантские ускорители частиц до энергий в десятки миллионов электрон-вольт, хитроумные ловушки для частиц — таков арсенал оружия современных «охотников».
В этой книге читатели познакомятся с историей открытия всех элементарных частиц, начиная с открытия электрона в 1896 году и кончая открытием омега-гиперона в 1964 году. Большое внимание уделено описанию современных теоретических представлений о мире сверхмалых частиц.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Все яснее видят они, что космические лучи, достигающие земной поверхности, как будто неоднородны, состоят из разных частиц. Одни частицы проникают глубоко в толщу Земли, тогда как другие задерживаются уже в тонком ее слое. Разные ли это частицы или одинаковые, но с существенно разными энергиями? И этого еще не ведают ученые в те годы.
И, наконец, чтó это за частицы? Вероятно, протоны и электроны, может быть, еще и гамма-лучи — больше ничего ведь быть не может.
Уже получены многие тысячи фотографий следов космических лучей. Читатель может удивиться. В те годы космические лучи были такими же, как и сегодня. Почему же в них тогда не были открыты десятки частиц? Ведь они ясно давали о себе знать!
Что ж, на это можно ответить так: и тысячу лет назад свет был таким, как сегодня. Однако же не открыли тогда, что он состоит из фотонов!
Одной зоркости зрения мало. Нужна еще зоркость мысли. Глаз видит то, что ищет ум. А головы теоретиков в те годы еще не искали новых частиц. Пока что им хватало уже открытых. Первую картину атомного мира можно было сложить и из этих частиц.
Но подождите немного. Уже близко то время, когда теоретикам начнет не хватать известных частиц. Тогда они скажут экспериментаторам: «Ищите новые частицы!» И даже укажут им, что приблизительно надо искать.
И пойдут экспериментаторы в толпу космических лучей, вооруженные, как детективы, лишь словесными портретами разыскиваемых частиц. И разыщут они почти все то, на что им указали теоретики. Найдут они еще много того, чего теоретики никак не предсказывали. И сядут тогда теоретики, мучительно сжав голову ладонями, чтобы понять, откуда явились незваные гости.
Но все это еще далеко впереди.
А пока из «красной России» приходят удивительные научные известия. О них сообщает в журнале Академии наук молодой советский физик Дмитрий Владимирович Скобельцын.
Прежде всего он додумывается поместить камеру Вильсона между полюсами сильного магнита. Результат этого мы уже можем предвидеть. Космическая частица, успешно преодолевшая ветер земного магнитного поля, часто оказывается бессильной противостоять магнитному ветру в камере: этот во многие тысячи раз сильнее земного. И частица сворачивает на кривую дорожку.
А дальше? Дальше можно повторить все те измерения, которые когда-то привели Томсона к открытию электрона. Прежде всего, измерив кривизну следа частицы в камере, можно определить отношение величины заряда к массе частицы. А считая, что частица несет на себе единичный электрический заряд (равный по величине заряду электрона), можно вычислить массу частицы.
Кривая должна говорить, однако, о большем. Магнитное поле искривляет пути положительно и отрицательно заряженных частиц в разные стороны. Значит, по тому, как искривлен след, можно сразу сделать заключение и о знаке заряда частицы.
Наконец, зная, что за частица влетела в камеру — об этом сообщают характерные свойства ее следа, жирный ли, прерывистый ли он, — ученый может по известной массе определить энергию частицы. А это исключительно важно.
Так след космической частицы становится источником важной информации о ее свойствах.
Но часто встречаются и такие энергичные космические частицы, что даже сильнейшее магнитное поле в камере не в состоянии сбить их с пути. Следы таких частиц простираются в камере от стенки и до стенки, совершенно прямые, одинаково тонкие или одинаково неплотные. О чем же это говорит? О том, что частица растратила в камере лишь ничтожную долю своей колоссальной энергии.
Так закружило не очень энергичный электрон магнитное поле в камере Вильсона. Электрон, выбитый из атома космической частицей, получил от нее в полет энергию порядка тысячи электрон-вольт. Постепенно растрачивая эту энергию в столкновениях с атомами газа, он описал суживающуюся спираль. Подсчитывая число следов таких, как их назвали физики, дельта-электронов и начальный диаметр витка спирали, можно узнать, какую энергию потеряла космическая частица в камере.
Торопливая частица пролетела камеру насквозь, не задерживаясь в ней. А поймать ее было бы очень интересно.
Но как это сделать? Космические частицы достигают Земли, пусть растеряв часть своей энергии в атмосфере, все же далеко не на излете. Даже смешно думать, что тонюсенький слой газа в камере смог бы в этом отношении конкурировать с многокилометровой толщей атмосферы Земли.
Поднять давление газа в камере до тысяч атмосфер? Трудно, но в принципе можно. Однако это даст лишь то, что метровый слой газа в камере сравняется с километровым слоем воздуха. Все равно — этого слишком недостаточно.
Космические лучи неплохо задерживаются тяжелыми металлами, атомы которых насчитывают на своих оболочках многие десятки электронов. Например, свинцом.
А раз так, то можно в камере Вильсона сделать свинцовые переборки. Одну, другую, третью. Даже если частица проскочит через все переборки, она в конце концов сильно замедлится.
Вот в камеру влетает частица, вспыхивает лампа, фотоаппарат срабатывает. И первые же снимки оправдывают ожидания. Даже больше — на них видны целые грозди следов частиц. Немногочисленные у первой переборки, на которую упала частица, затем они быстро ветвятся, и вот уже с переборок свисают целые кусты из многих десятков и сотен следов.
«Снопы частиц», — называет их Пьер Оже, уроженец солнечной Франции.
«Ливни частиц», — предлагает Патрик Блеккет, житель дождливой Англии. Это название — «ливни» — и закрепляется за удивительным явлением. Может быть, ливни побеждают еще и потому, что немного спустя это явление обнаруживают и в атмосфере. А это уже более близкое сравнение.
Ливень вторичных частиц, образованных энергичной космической частицей в свинцовых перегородках камеры Вильсона. Изучая число «струй» в таких ливнях от перегородки к перегородке, можно в конце концов оценить энергию космической частицы. Она наверняка составит многие миллиарды электрон-вольт.
Ливни в камере Вильсона — лишь жалкое подобие атмосферных ливней, в которых рожденные одной космической частицей и бурно размножающиеся потоки миллионов вторичных частиц летят на Землю.
— Подумать только, — восклицает Пьер Оже, — что такие ливни непрерывно возникают в нашем собственном теле! Ежеминутно в наше тело проникает около тысячи космических частиц, а за этот промежуток времени в тканях нашего тела возникают сотни ливней, о которых мы не имеем ни малейшего представления.
Не имели — правильнее сказать. К концу двадцатых годов физики такое представление получили.
Что ж, можно начинать настоящий штурм космических лучей. Но для этого необходимо подтянуть теоретические тылы. Со времени создания Резерфордом и Бором замечательной теории атома прошло почти двадцать лет. И за эти годы старую теорию не узнать, настолько она изменилась и обогатилась. Теперь слово о ней.
Глава 3
Кентавры атомного мира
«Победителей не судят!» — гласит старая поговорка. В науку она, однако, доступа не имеет. Еще как пристрастно судят! Пока не обоснован каждый шаг ученого в его сражении с природой, победа не засчитывается.
Но изредка бывает и иначе. Подозрительные ученые, косясь на ничем не обоснованную теорию, все же начинают потихоньку применять ее. Все-таки что-то лучше, чем ничего! Первый успех, второй успех!
И прежняя недоверчивость исчезает: теория «работает». Она никак не обоснована? Это ничего, «работает», значит, в общем, верна. А обоснование все равно когда-нибудь придет!