-->

Охотники за частицами

На нашем литературном портале можно бесплатно читать книгу Охотники за частицами, Рыдник Виталий Исаакович-- . Жанр: Физика / Детская образовательная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Охотники за частицами
Название: Охотники за частицами
Дата добавления: 16 январь 2020
Количество просмотров: 398
Читать онлайн

Охотники за частицами читать книгу онлайн

Охотники за частицами - читать бесплатно онлайн , автор Рыдник Виталий Исаакович

В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы.

Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах. Гигантские ускорители частиц до энергий в десятки миллионов электрон-вольт, хитроумные ловушки для частиц — таков арсенал оружия современных «охотников».

В этой книге читатели познакомятся с историей открытия всех элементарных частиц, начиная с открытия электрона в 1896 году и кончая открытием омега-гиперона в 1964 году. Большое внимание уделено описанию современных теоретических представлений о мире сверхмалых частиц.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 17 18 19 20 21 22 23 24 25 ... 60 ВПЕРЕД
Перейти на страницу:

И вот классическая физика влечет свою противницу к самому атомному барьеру. Она словно желает, чтобы дуэль между ними происходила по всем правилам. Однако, вопреки ожиданию, квантовая механика нисколько не нервничает. Напротив, она любезно помогает установить приборы для решающего опыта. Но при этом чуть-чуть заметно усмехается: она-то знает, как ведут себя приборы в атомном мире!

Начинается опыт. Прибор должен поймать частицу внутри барьера. При этом неважно, в каком месте, — достаточно лишь уличить частицу в том, что она находится где-то под барьером. Поэтому для опыта берутся кванты света с длиной волны, понятно, не более ширины барьера.

Частица засечена в яме, она движется по направлению к барьеру, прибор включен… — и классическая физика удивленно протирает глаза. Частица прошла над барьером! Несмотря на то, что ей недоставало энергии перемахнуть через барьер!

А квантовая механика громко и обидно смеется над еще раз поверженной противницей. Поимка не удалась. И мы догадываемся уже, почему. Измерительный прибор, вмешавшись в «незаконное» явление, добавил частице как раз столько энергии, что смог перебросить ее над барьером.

Нет, о том, чтобы уличить частицу в момент просачивания сквозь барьер, не может быть и речи. А вместе с тем частицы просачиваются сквозь барьеры!

Туннельный эффект работает

И это не выдумка хитрой квантовой механики.

Вот два доказательства. Из холодного куска металла электроны не вылетают: это факт, твердо установленный. Но раскаленный кусок металла обильно испускает электроны. Все нити накала радиоламп используют именно это явление. Электроны в холодном куске металла имеют недостаточную энергию для преодоления барьера-ступеньки на границе куска металла. При нагревании они увеличивают свою энергию и преодолевают барьер на границе металла вполне законным с точки зрения старой физики способом.

Квантовой механике здесь еще нечего делать. Но приложим к холодному куску металла сильное электрическое поле. Оно увеличит энергию электронов. Подберем, однако, это поле так, чтобы переданной им электронам энергии все же было недостаточно для их вылета за пределы куска металла. Поле, в сущности, лишь перекосит барьер на границе металла, превратит его из лестничной ступеньки в забор.

И этого достаточно. Электроны начинают просачиваться сквозь барьер. Возникает так называемая холодная эмиссия электронов. Это явление используется в целом ряде замечательных электронных приборов. А вот и второе доказательство: из тяжелых атомных ядер при радиоактивном распаде вылетают альфа-частицы. Ядро существует? Существует. Значит, в общем, подавляющее большинство частиц в нем не имеет возможности покинуть его. Именно подавляющее большинство: альфа-частица уносит с собой лишь какие-то жалкие два процента массы ядра.

Получается так, словно ядерная семья живет в доме, отгородившемся высоким и глухим забором от своих соседей. Может быть, альфа-частицы удирают из этого дома, перемахнув через забор? Не похоже: уж очень высок забор и очень незначительна по сравнению с его высотой энергия альфа-частиц.

И тогда американский физик Джордж Гамов вспоминает о туннельном эффекте, для которого не существует глухих заборов. Альфа-частицы просачиваются через барьер на границе ядра! И проведенный им расчет отлично подтверждается на опыте. Этот расчет произведен в конце двадцатых годов нашего века.

О «вращающихся» частицах

Неистощимые спектры! Сколько открытий принесли они физикам, химикам, астрономам! Именно из многоцветья спектров рождалась первая теория атома Нильса Бора. Именно с помощью спектров химики открыли множество химических элементов, научились производить точнейшие химические анализы. Именно спектры позволили астрономам проникнуть в бескрайние просторы Вселенной и «пощупать» строение звезд и состав межзвездных пространств.

В 1925 году спектры поднесли физикам еще одно замечательное открытие. Оно ждало своей очереди добрых тридцать лет, с тех пор как голландский ученый Питер Зееман обнаружил удивительное расщепление спектральных линий в магнитном поле.

Картина была в самом деле поразительной. Узкая яркая линия, стоило внести источник света в магнитное поле, вдруг исчезала. На ее месте, словно осколки, оказывалась группа более слабых линий. Росло поле, и линии расходились, сливаясь друг с другом. Наконец в сильном поле оставались только две или три линии.

Понятно, в чем дело, заявили физики после создания первой теории атома. Электрон кружится по орбите вокруг ядра, словно малюсенький круговой ток. И этот ток ведет себя, как крошечный магнитик. Помести его в большой магнит, и они начнут взаимно влиять друг на друга.

На большом магните влияние маленького, конечно, никак не скажется. Но на маленьком магните оно проявится совершенно отчетливо: он изменит свою энергию. Орбита электрона чуть-чуть сместится, прыжки электрона между орбитами станут чуть длиннее или чуть короче.

Этого достаточно: спектральные линии изменят свое положение. Вместо одной линии на ее месте появится ряд смежных линий.

И расчет действительно неплохо подтверждает такое представление. Неплохо — в данном случае означает лишь: очень часто, но не всегда. Иной раз и «осколки» линии не там, где им полагалось бы находиться, иной раз и число «осколков» не то, что предсказывается.

Складывается такое впечатление, что электронный магнитик временами то слишком слаб, то слишком силен. Словно есть в нем какой-то дополнительный магнитик, который то складывается с основным магнитиком, то вычитается из него.

Дополнительный магнитик? Значит, дополнительный ток? Какому же еще движению электрона должен отвечать этот ток?

Движению вокруг самого себя! Электрон вращается не только вокруг «солнца» — ядра, но и как полагается настоящей «планетке» — вокруг самого себя!

Первым в 1921 году эту мысль высказывает Артур Комптон. Она проходит незамеченной.

Вторым в январе 1925 года эту мысль высказывает Роберт Крониг. Она встречает довольно резкую критику.

Третьими в сентябре 1925 года эту мысль высказывают Джордж Уленбек и Сэмюэл Гаудсмит. Они ничего не знают о том прохладном приеме, который встретил догадку Кронига. Более того, отдав статью своему учителю, замечательному физику Павлу Сигизмундовичу Эренфесту, они через несколько дней обнаружили, что из их идеи вытекает вопиющее следствие. Скорость на «поверхности» вращающегося вокруг себя электрона должна во много раз превышать скорость света!

Да ведь это же совершеннейший абсурд! Это же запрещено теорией относительности Эйнштейна! Ученики с превеликим беспокойством бегут к учителю, перебивая друг друга, рассказывают об этом, просят обратно свою статью. А Эренфест с улыбкой отвечает: «Я уже направил вашу статью в печать. Вы оба достаточно молоды, чтобы позволить себе сделать глупость!»

И «глупость» совершается: статья выходит в свет. Чудесная «глупость» — побольше бы таких! Спустя два месяца заново пересчитываются зеемановские «осколки» спектральных линий с помощью добавки к электронному магнитику. И что же — теперь блестящее согласие!

Так в физику входит вращающийся электрон. «Спин» — так названо новое явление: электрон, словно крошечный волчок («волчок» — и есть по-английски «спин»).

Замечательно! Но как понимать слова о вращении электрона? Они же сказаны в то время, когда квантовая механика выбрасывает траектории электрона. Когда она заменяет орбиты «волнами вероятности» и показывает, что бессмысленно говорить о вращении электрона вокруг ядра.

А тут еще «вращение вокруг самого себя»! Да где та ось, вокруг которой вертится электрон? Нет ее. Сам электрон в те годы изображается точкой без всяких размеров, — как в таком случае понимать «вращение точки»? Никак нельзя понимать, и единственное наглядное, казалось бы, представление в атомном мире тут же теряет наглядность.

1 ... 17 18 19 20 21 22 23 24 25 ... 60 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название