Охотники за частицами
Охотники за частицами читать книгу онлайн
В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы.
Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах. Гигантские ускорители частиц до энергий в десятки миллионов электрон-вольт, хитроумные ловушки для частиц — таков арсенал оружия современных «охотников».
В этой книге читатели познакомятся с историей открытия всех элементарных частиц, начиная с открытия электрона в 1896 году и кончая открытием омега-гиперона в 1964 году. Большое внимание уделено описанию современных теоретических представлений о мире сверхмалых частиц.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Так неужели в этом широчайшем диапазоне не удалось бы обнаружить волн де-Бройля, если бы они существовали? «Можно и не обнаружить», — говорит де-Бройль. Он производит подсчет по предложенной им формуле.
Какое движение вы хотите взять? Движение Земли по своей орбите вокруг Солнца? Пожалуйста: длина волны материи, сопутствующей этому движению, имеет величину порядка 10–55 сантиметра. Величина сверхничтожно малая! Никакими приборами зарегистрировать ее нечего и надеяться. Чтобы почувствовать малость такой длины, не помогут никакие сравнения. Достаточно сказать, что размеры атомного ядра меньше размеров видимой Вселенной «всего лишь» в 10–39 раз.
Возьмем в таком случае предмет гораздо более легкий и движущийся с небольшой скоростью, например, камешек, брошенный рукой. Пожалуйста: сопровождающая его волна материи имеет длину порядка 10–30 сантиметра. Положение по-прежнему совершенно неутешительное!
Выходит, надо де-Бройлю поверить на слово: никакими приборами его волн материи не обнаружить? Нет, мысль де-Бройля можно проверить. Но для этого надо взять самую легкую частицу в природе — электрон. Если его разогнать в электрическом поле с напряжением в 1 вольт (то есть до энергии 1 электрон-вольт), то электрон приобретет довольно солидную скорость. Длина его де-бройлевской волны окажется в пределах 10–7–10–8 сантиметра. Это область длин волн рентгеновых лучей.
Итак, по крайней мере в принципе, волны материи можно было бы пытаться обнаружить.
Но одной принципиальной возможности мало. Ведь волны материи отличаются от всех других известных волн. Чем же их обнаруживать? Глаз воспринимает электромагнитные волны, ухо — звуковые. Все существующие приборы лишь расширяют границы наших органов чувств, но отзываются тоже только на эти виды волн. Волны де-Бройля же ни око не видит, ни ухо не слышит, ни зуб неймет!
А все-таки это волны. Должно найтись какое-нибудь явление, в котором волны материи проявят себя, если они существуют на самом деле. И даже не одно явление.
Например, физики давно пользуются в качестве пробного камня для волн явлением дифракции. Волна, наталкиваясь на своем пути на препятствия, как бы обтекает их и снова смыкается позади них. Но если, например, интенсивность волны до препятствия была по всему фронту одинакова, то за препятствием ее распределение принимает «полосатый» вид. В одних участках волна усиливается, в других — ослабляется. Ровная световая волна, пройдя мимо круглого экрана или через круглое отверстие малого размера, дает изображение в виде чередующихся темных и светлых колец.
Итак, волну материи будут ловить на дифракции. Какие препятствия для нее выбрать? Можно те же, с помощью которых совсем не так давно была открыта дифракция рентгеновых лучей, — атомы кристаллов. Только электроны, в отличие от рентгеновых лучей, в кристаллах очень сильно поглощаются. Поэтому надо работать, как говорят физики, не на просвет, а на отражение. То есть вести наблюдение по ту же сторону кристалла, где располагается источник электронов.
Наконец все додумано. Через три года после появления статьи де-Бройля ставится первый опыт по поимке волн материи. Пучок электронов из раскаленной металлической нити, оформленный диафрагмой, посылается на грань кристалла, отражается от нее и направляется на фотопластинку. Если нет никаких электронных волн, то на пластинке должен получиться четкий контур диафрагмы.
И вот экспозиция закончена. Фотопластинку уносят в темную комнату и кладут в проявитель. Медленно тянутся секунды, медленно проступают контуры снимка. Нетерпеливые исследователи, не дожидаясь конца проявления, извлекают пластинку из воды, подносят к свету…
Есть! Есть дифракционные кольца!
Слабенькие, еле заметные, они бесконечно радуют ученых. Как бесценное сокровище, пересылают эти первые фотопластинки с записью волн материи в крупнейшие физические лаборатории мира. Их придирчиво, внимательно изучают, но сомнений больше нет. Электроны оставили на фотопластинке следы волн.
Поразительно смелая мысль де-Бройля о волнах материи получает блестящее подтверждение.
Слева вы видите рентгенограмму, полученную на образце, состоящем из множества мелких кристалликов. Справа — картина дифракции электронов от подобного вещества. Она называется электронограммой. Такие снимки наряду с рентгенограммами служат для изучения строения кристаллов. Именно электронограмма убедила физиков в существовании электронных волн де-Бройля.
…Открытие волн материи завершает не только историю одной смелой мысли. Оно завершает целую эпоху в физике и открывает в ней новую, еще более глубокую и богатую современную эпоху.
Испокон веку физика различала два не сводимых друг к другу, два в корне различных движения — движение частиц и распространение волн. И законы этих движений были совершенно различными.
Частицы не могут проникать одна в другую, не могут сами по себе перераспределять свои потоки, отклоняться самопроизвольно от прямых путей. Совсем не то — волны: они могут накладываться друг на друга, перераспределять свои интенсивности — интерферировать, искривлять свои пути, заходя в тень за препятствием, — дифрагировать. Частицы имеют определенные размеры, свои границы. Идеальные же волны, которые мы рисуем в виде синусоид, не имеют ни начала, ни конца в пространстве и времени.
Но вот несоединимому предстояло соединиться. И еще задолго до гипотезы де-Бройля. Виновник этого соединения — свет. А непосредственный исполнитель, как мы помним, Альберт Эйнштейн: он вводит фотон.
Фотон — это частица света, обладающая свойствами волны. Фотон — это электромагнитная волна, обладающая свойствами частицы. Так в физике появилась первая двуликая сущность.
Каким ликом обернется фотон, зависит от явления, в котором он принимает участие. В одних явлениях, скажем, в дифракции, он выказывает волновую сущность. В других, например, в фотоэффекте, он обнаруживает сущность частиц.
Де-Бройль открывает, что подобная двуликость — удел не только света, но вообще всех частиц вещества. Мир атомов оказывается двуликим везде и во всем.
Старое живуче. Классическая физика прокрадывается в теорию Бора и «портит» ее достижения. Она же проникает и в теорию де-Бройля.
Как связаны свойства волны и свойства частицы? Де-Бройль высказывает мысль о «волне-пилоте». Но что это, как не механическое сочетание волны и частицы? Под таким сочетанием, несмотря на всю его необычность, классическая физика может охотно подписаться.
Действительно, этот образ составлен из двух обычных классических представлений — частицы и волны. То, что эти представления скомпонованы не классически, ничего, в сущности, не меняет.
Де-Бройль и сам это сознает. Надо отдать предпочтение чему-то одному, нашептывает старая привычка в часы долгих раздумий. И де-Бройль решается выбросить из игры частицу. Частицы, как таковой, не существует, заявляет он. Частица — это образование из волн материи, «волновой пакет», как говорят физики.
Так, в виде «подушки», составленной из волн, физики и представляют себе волновой пакет. Видно, что высота волн быстро уменьшается по мере удаления от середины пакета. Это и позволяет говорить о том, что пакет компактен.
Чем-то он напоминает ударную волну. Такая волна, оставаясь волной, может высаживать стекла не хуже, чем удар снаряда, она компактна. Образно говоря, волна материи — какое-то цунами микромира. То самое цунами, что в открытом море лишь качает корабли, а на берегу производит страшные разрушения.