Личностный потенциал. Структура и диагностика
Личностный потенциал. Структура и диагностика читать книгу онлайн
Коллективная монография охватывает широкий круг вопросов психологии личности через призму новой концепции личностного потенциала – системы характеристик личности, лежащих в основе успешной саморегуляции в различных сферах жизнедеятельности.Адресуется психологам.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Интеллектуальные нейронные сети
Интеллектуальные нейронные сети (ИНС) стали использовать в 40-х гг. XX века применительно к задачам, связанным с вычислительными и информационными технологиями. Ведущую роль здесь сыграли американские математики, предложившие заимствовать принципы организации и функционирования биологических нейронных сетей для решения задач, связанных с анализом и обработкой информации в электронных вычислительных системах (У. Маккалох, Д. Хебб, Ф. Розенблатт, М. Минский, Дж. Хопфилд) ( Джейн, Мао, Моиуддин , 1997; Круглов, Борисов , 2001; Bar-Yam , 2003). Термин «интеллектуальная нейронная сеть» получил официальное признание в середине 1950-х гг. Термин «интеллектуальная» используется, чтобы отличить компьютерные нейронные сети от биологических. Таким образом, под ИНС подразумеваются алгоритмы, построенные по аналогии с представлениями середины прошлого века о процессах взаимодействия нейронов в человеческом мозге и реализующие распределенные и параллельные системы получения, передачи и обработки сигналов, адаптирующиеся в ходе своего функционирования. За более чем полвека ИНС получили широкое распространение в области задач искусственного интеллекта. Они широко используются в экономике для предсказания, например, ситуаций на финансовом рынке; в медицине для диагностики различных болезней; в экологии для контроля окружающей среды; в политологии и социологии для предсказания результатов политических выборов, кризисных ситуаций в общественном сознании; для решения задач, связанных с распознаванием визуальных и звуковых образов; для моделирования принятия решений в проблемных ситуациях и др. ( Горбань, Дунин-Барковский, Кирдин и др., 1998; см. также URL: http://cs.mipt.ru/docs/comp/rus/develop/neuro/nauroinform/main.pdf).
Задачи, решаемые с помощью нейронных сетей, можно свести к следующей математической постановке. Необходимо построить отображение X→Y такое, чтобы на каждый возможный входной сигнал X формировался правильный выходной сигнал Y . Отображение задается конечным набором пар (<известный вход>, <известный выход>). Число таких пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки. Большая часть прикладных задач может быть сведена к реализации сложного многомерного функционального преобразования. Выделяют следующие типы задач, решаемые в интеллектуальных нейронных сетях.
Классификация образов. Требуется указать принадлежность входного образа X (например, речевого сигнала или рукописного символа), представленного вектором признаков, к одному или нескольким предварительно определенным классам Y : распознавание букв, распознавание речи, классификация сигнала электроэнцефалограммы, типологизация людей в соответствии с их личностными характеристиками.
Кластеризация/категоризация. Требуется разместить близкие образы X в один кластер Y . Кластеры при этом могут быть заранее неизвестны. Чаще всего этот тип задач используется для сжатия данных, выявления априорно неизвестных свойств объектов.
Аппроксимация функций. Необходимо оценить неизвестную функцию, искаженную шумом. Входной сигнал X является аргументом этой функции, а выходной Y – ее значением. Используется для моделирования функциональных зависимостей.
Предсказание/прогноз. Предсказать значение временнóго ряда в некоторый будущий момент времени t n+1 .на основании значений этого ряда в последовательные моменты времени t 1 , t 2 …., t n . В качестве входных сигналов X используется набор значений временного ряда полученных в n последовательных промежутках времени. Выходной сигнал Y – значение временного ряда в n+1 промежуток.
Оптимизация. Найти решение, удовлетворяющее системе ограничений и максимизирующее или минимизирующее целевую функцию. Примером является так называемая задача коммивояжера, требующая проложить кратчайший путь. На вход подаются координаты пунктов, на выход – искомый кратчайший путь. В психологии в данный класс задач попадают многие задачи принятия решений, нахождения компромисса и пр.
Память, адресуемая по содержанию. Среди множества объектов найти максимально похожий на предъявляемый. Предъявляемый объект, подаваемый на вход, представляет собой частичное или искаженное воспроизведение какого-либо объекта, находящегося в памяти и подаваемого в качестве ответа на выход. Используется для моделирования семантических пространств.
Управление. Определить величину входного управляющего воздействия на систему таким образом, чтобы получить желаемый результат управления. X – набор контролируемых параметров управляемого объекта, Y – код, определяющий управляющее воздействие, соответствующее текущим значениям контролируемых параметров. Примером может служить оптимальное управление коллективом, психотерапевтическое воздействие.
В последнее время в связи с возрастанием интереса к исследованиям нелинейных процессов, появились работы, предлагающие для реализации нелинейных моделей использовать не только соответствующие активационные функции, но и вычислять взвешенную сумму входов нейрона по нелинейным зависимостям, например:
Пример использования нейросетей для предсказания итогов президентских выборов в США стал уже хрестоматийным ( Круглов, Борисов , 2001). На основе таблицы данных с результатами 31 предвыборной ситуации президента США (с 1860 по 1980 г.), содержащей данные по 12-ти бинарным признакам (да/нет) и результатами выборов (победе правящей или оппозиционной партии) была построена сеть, «предсказавшая» результаты вторых выборов Рейгана, победу Буша над Дукакисом, обе победы Клинтона.
Алгоритмы нейронных сетей позволяют анализировать тексты, политические ситуации, разрабатывать типологию ментальности, политических, религиозных, экономических установок, проводить исследования возможности прогнозирования индивидуального и массового поведения.
Нелинейные идеи в многомерной статистике
Нелинейная методология получает все большее распространение даже в таких традиционно линейных областях, как многомерная статистика. К достаточно широко распространенным нелинейным регрессионным моделям добавляется нелинейный факторный анализ, использование нелинейных пространств в многомерном шкалировании.
Структурное моделирование – методология, которой удалось органично совместить мощь факторного, регрессионного анализа с необходимой строгостью, присущей более простым статистическим методам. Она позволяет определить не только силу связей, но и зависимость этой силы от других показателей. В некоторых ситуациях при более низком уровне личностного развития связи между переменными носят больше жесткий, детерминистический характер, а на высоком уровне развития одни выступают по отношению к другим лишь как предпосылки, не предопределяя их однозначно. Моделирование траекторий латентных изменений позволяет выявить факторы, влияющие на показатели, определяющие характер функций, задающих динамику того или иного показателя на разных этапах развития индивида как носителя сознания. Например, и в детском, и в более зрелом возрасте показатель, связанный с жизненным опытом, мудростью растет со временем. Но на начальном этапе личностного развития скорость роста этого показателя в большей степени детерминирована характеристиками семейного окружения и родительского отношения; с подросткового возраста скорость роста в большей степени зависит от личностных характеристик человека. Имея накопленные лонгитюдные данные, можно не только показать, что различные категориальные структуры сознания в разные возрастные периоды по-разному обусловливаются различными предикторами, но и количественно оценить эту разницу, выявить критические точки, в которых, несмотря на непрерывность динамики, могут меняться параметры, детерминирующие латентные переменные, обусловливающие эту динамику, а также сам характер этой динамики.