Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 443
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Фейнмановские лекции по физике. 9. Квантовая механика II - _622.jpg

Поскольку и плотность тока и плотность заряда имеют для сверхпроводящего электронного газа прямой физический смысл, то и r и q — вполне реальные вещи. Фаза столь же наблюдаема, как и r: это часть плотности тока J. Абсолютная фаза ненаблю­даема, но если градиент фазы известен во всех точках, то фаза известна с точностью до константы. И если вы определите по своему желанию фазу в одной точке, то во всех остальных точ­ках она уже определится сама собой.

Кстати заметим, что уравнение для тока можно проанализи­ровать и изящнее, если представить себе, что плотность тока и впрямь совпадает с произведением плотности заряда на ско­рость тока электронной жидкости, т. е. что J=rv. Тогда (19.18) равнозначно уравнению

Фейнмановские лекции по физике. 9. Квантовая механика II - _623.jpg

Мы замечаем, что в mv-импульсе есть две части: одна связана с векторным потенциалом, а другая с поведением волновой функции. Иными словами, величина hСq— это как раз то, что мы называли р-импульсом.

§ 6. Явление Мейсснера

Теперь уже можно кое-что рассказать и о явлении сверхпро­водимости. Прежде всего здесь отсутствует электрическое сопротивление. А нет сопротивления оттого, что все электроны коллективно пребывают в одинаковом состоянии. При обычном течении тока то один электрон, то другой выбивается из равно­мерного потока, постепенно разрушая полный импульс. Здесь же не так-то просто помешать одному электрону делать то, что делают другие, ибо все бозе-частицы стремятся попасть в оди­наковое состояние. Ток, если уж он пошел, то это навеки.

Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнит­ное поле (что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент созда­ния магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток, который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое элек­трическое поле уже вызовет достаточный ток, чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.

Еще интереснее другое связанное с этим явление, экспери­ментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверх­проводником), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток, и как раз в таком количестве, чтобы вытолкнуть поле наружу.

Причину этого можно понять из уравнений, и сейчас я объяс­ню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А рав­ной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть ра­вен нулю. Но погодите, а как же с вариацией r? Я забыл упо­мянуть об одном важном пункте. В металле существует фон по­ложительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятель­ствах плотность электронного заряда в сверхпроводниках поч­ти идеально однородна, и я вправе считать r постоянным. Да­лее, единственная возможность, чтобы С2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р-импульсом. Согласно выражению (19.18), ток пропорционален r, умноженному на А. Значит в куске сверхпроводящего материала ток с необходимо­стью будет пропорционален вектор-потенциалу

Фейнмановские лекции по физике. 9. Квантовая механика II - _624.jpg

Знаки r и q одинаковы (отрицательны), и поскольку r — вели­чина постоянная, то я могу положить rq/m =-(некоторая по­стоянная). Тогда

J=-(некоторая постоянная)А. (19.21)

Это уравнение впервые предложили братья Лондон, чтобы объяснить экспериментальные наблюдения над сверхпроводи­мостью, задолго до того, как люди уяснили себе квантовомеханическое происхождение эффекта.

Мы теперь можем подставить (19.20) в уравнения электро­магнетизма и определить поля. Векторный потенциал связан с плотностью тока уравнением

Фейнмановские лекции по физике. 9. Квантовая механика II - _625.jpg

Если вместо J я подставлю (19.21), то получу

Фейнмановские лекции по физике. 9. Квантовая механика II - _626.jpg

где l2—просто новая постоянная

Фейнмановские лекции по физике. 9. Квантовая механика II - _627.jpg

Теперь можно попробовать решить это уравнение относи­тельно А и детальнее посмотреть, что там происходит. Напри­мер, в одномерном случае у (19.23) имеются экспоненциальные решения вида е-lxи е+lх. Эти решения означают, что вектор­ный потенциал обязан экспоненциально убывать по мере удале­ния от поверхности внутрь образца. (Возрастать он не может — будет взрыв.) Если кусок металла очень велик по сравнению с 1/l, то поле проникнет внутрь только в тонкий слой у поверх­ности толщиной около 1/l. Все остальное место внут­ри проводника будет сво­бодно от поля, как пока­зано на фиг. 19.3.

Фейнмановские лекции по физике. 9. Квантовая механика II - _628.jpg

Фиг. 19.3. Сверхпроводящий цилиндр в магнитном поле (а) и магнитное поле В как функ­ция от r (б).

Этим и объясняется явление Мейсснера.

Какова же эта «глубина проникновения» 1/l? Вы помните, что r0— «электро­магнитный радиус» элек­трона (2,8·10-13см)—вы­ражается формулой

Фейнмановские лекции по физике. 9. Квантовая механика II - _629.jpg

Вы помните также, что q вдвое больше заряда электрона, так что

Фейнмановские лекции по физике. 9. Квантовая механика II - _630.jpg

Записав r в виде qeN, где N — число электронов в кубическом сантиметре, мы получим

Фейнмановские лекции по физике. 9. Квантовая механика II - _631.jpg

У такого металла, как свинец, на каждый кубический сантиметр приходится 3·1022 атомов, и если каждый атом снабдит нас одним электроном проводимости, то 1/l будет порядка 2·10-5 см . Это дает вам порядок величины эффекта.

§ 7. Квантование потока

Уравнение Лондонов (19.21) было предложено, чтобы объяс­нить наблюдавшиеся при сверхпроводимости явления, включая эффект Мейсснера. Однако в последнее время прозвучали и бо­лее поразительные предсказания. Одно из предсказаний Лон­донов было таким своеобразным, что никто даже не обратил на него особого внимания. Об этом я и расскажу. На сей раз возь­мем сверхпроводящее кольцо, толщина которого по сравнению с 1/l велика, и посмотрим, что случится, если мы сперва на­ложим на кольцо магнитное поле, затем охладим кольцо до сверхпроводящего состояния, а потом уберем первоначальный источник поля В. Последовательность этих событий изображена на фиг. 19.4.

Перейти на страницу:
Комментариев (0)
название