Фейнмановские лекции по физике. 9. Квантовая механика II
Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Существует ли такой ток? Вы знаете, что плотность вероятности P(r, t) выражается через волновую функцию
И вот, я спрашиваю: существует ли такой ток J, что
Если я продифференцирую (19.7) по времени, то получу два слагаемых

Теперь для дy/дt возьмите уравнение Шредингера — уравнение (19.3); кроме того, комплексно его сопрягите, т. е. перемените знак при каждом i, чтобы получить дyj/дt. У вас выйдет

Члены с потенциальной энергией и многие другие члены взаимно уничтожатся. А то, что останется, оказывается, действительно можно записать в виде полной дивергенции. Все уравнение целиком эквивалентно уравнению
Не так уж сложно, как кажется на первый взгляд. Это симметричная комбинация из y*, умноженного на некоторую операцию над y, плюс y, умноженное на комплексно сопряженную операцию над y*. Это просто некоторая величина плюс комплексно сопряженная ей величина, так что все вместе (как и положено быть) вещественно. Операция запоминается так: это попросту оператор импульса
Тогда это и есть тот ток J, который удовлетворяет уравнению (19.8).
Уравнение (19.8) показывает, что вероятность сохраняется локально. Если частица исчезает из одной области, то она не может оказаться в другой без того, чтобы что-то не протекло в промежутке между областями. Вообразите, что первая область окружена замкнутой поверхностью, которая проведена так далеко, что имеется нулевая вероятность обнаружить на ней электрон. Полная вероятность обнаружить электрон где-то внутри поверхности равна объемному интегралу от Р. Но, согласно теореме Гаусса, объемный интеграл от дивергенции J равняется поверхностному интегралу от J. Если y на поверхности равно нулю, то (19.12) утверждает, что и J есть нуль; значит, полная вероятность отыскать частицу внутри поверхности не может измениться. Только тогда, когда часть вероятности достигает границы, какая-то ее часть может вытечь наружу. Мы вправе говорить, что она выбирается наружу только через поверхность— это и есть локальная сохраняемость.
§ 3. Два рода импульсов
Уравнение для тока довольно интересно, хотя порой причиняет немало забот. Ток можно было бы считать чем-то вроде произведения плотности частиц на скорость. Плотность выглядела бы как yy*, так что здесь все в порядке. Каждый член в (19.12) напоминает типичное выражение для среднего значения оператора

Поэтому, быть может, следовало бы рассматривать его как скорость потока? Но тогда получается, что скорость с импульсом можно связать двояким образом, ведь с равным правом можно было бы считать, что скоростью должно быть отношение импульса к массе
Оказывается, те же две возможности имелись еще в классической физике, и в ней тоже было найдено, что импульс можно определить двумя путями. Один можно назвать «кинематическим импульсом», но для абсолютной ясности я в этой лекции буду его называть «mv-импульсом». Это импульс, получаемый от перемножения массы на скорость. Другой, более математичный, более отвлеченный импульс, именуемый иногда «динамическим импульсом», а я его буду называть «р-импульс». Итак, у нас есть две возможности:
mv-импульс=mv, (19.14)
р-импульс=тv+А. (19,15)
И вот оказывается, что в квантовой механике, включающей магнитные поля, с оператором градиента
Здесь я хотел бы немного отклониться от темы и пояснить, почему так получается—отчего в квантовой механике должно быть нечто похожее на (19.15). Волновая функция меняется со временем, следуя уравнению Шредингера (19.3). Если бы я внезапно изменил векторный потенциал, то в первое мгновение волновая функция не изменилась бы, а изменилась бы только скорость ее изменения. Теперь представьте себе, что случится в следующих обстоятельствах. Пусть имеется длинный соленоид, в котором я создаю поток магнитного поля (поля В), как показано на фиг. 19.2.

Фиг. 19.2. Электрическое поле снаружи соленоида, ток в котором увеличивается.
А поблизости сидит заряженная частица. Допустим, что этот поток почти мгновенно с нуля вырастает до какого-то значения. Сперва векторный потенциал равен нулю, а потом я его включаю. Это означает, что я внезапно создаю круговой вектор-потенциал А. Вы помните, что криволинейный интеграл от А вдоль петли это то же самое, что поток поля В сквозь петлю [см. гл. 14, § 1 (вып. 5)]. И что же происходит, когда я мгновенно включаю векторный потенциал? Согласно квантовомеханическому уравнению, внезапное изменение А не вызывает внезапного изменения y; волновая функция пока та же самая. Значит, и градиент не изменился.
Но вспомните, что происходит электрически, когда я внезапно включаю поток. В течение краткого времени, пока поток растет, возникает электрическое поле, контурный интеграл от которого равен скорости изменения потока во времени
Е=-дA/дt. (19.16)
Если поток резко меняется, то электрическое поле достигает огромной величины и оказывает сильное воздействие на частицу. Эта сила равна произведению заряда на электрическое поле; стало быть, в момент появления потока частица получает полный импульс (т. е. изменение в mv), равный -qА. Иными словами, если вы подействуете на заряд векторным потенциалом, включив его внезапно, то этот заряд немедленно схватит mv-импульс, равный -qА. Но имеется нечто, не меняющееся немедленно,— это разность между mvи -qА.Стало быть, сумма p=mv+qAи есть то, что не меняется, если вы подвергаете вектор-потенциал внезапному изменению. Именно эту величину мы именуем p-импульсом, именно она играет важную роль в классической динамике; она же оказывается существенной и в квантовой механике. Эта величина зависит от характера волновой функции и является преемником оператора
при наличии магнитного поля.
§ 4. Смысл волновой функции
Когда Шредингер впервые открыл свое уравнение, он открыл заодно, что закон сохранения (19.8) есть следствие этого уравнения. Но он неправильно решил, что Р это плотность электрического заряда электрона, a J — плотность электрического тока, т. е. он думал, что электроны взаимодействуют с электромагнитным полем через эти заряды и токи. Решая свои уравнения для атома водорода и вычисляя y, он не вычислял никакой амплитуды (в то время еще не было амплитуд), а толковал это совершенно иначе. Атомное ядро было стационарно, вокруг же него текли токи; заряды Р и токи J генерировали электромагнитные поля, и все вместе это излучало свет. Но вскоре, решая задачу за задачей, он понял, что рассуждает не вполне правильно. И именно в этот момент Борн выдвинул весьма нетривиальную идею. Именно Борн правильно (насколько нам известно) отождествил y в уравнении Шредингера с амплитудой вероятности, предположив, что квадрат амплитуды — это не плотность заряда, а всего лишь вероятность (на единицу объема) обнаружить там электрон и что если вы находите электрон в некотором месте, то там окажется и весь его заряд. Вся эта идея принадлежит Борну.
