Фейнмановские лекции по физике. 9. Квантовая механика II

На нашем литературном портале можно бесплатно читать книгу Фейнмановские лекции по физике. 9. Квантовая механика II, Фейнман Ричард Филлипс-- . Жанр: Прочая старинная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фейнмановские лекции по физике. 9. Квантовая механика II
Название: Фейнмановские лекции по физике. 9. Квантовая механика II
Дата добавления: 15 январь 2020
Количество просмотров: 444
Читать онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн

Фейнмановские лекции по физике. 9. Квантовая механика II - читать бесплатно онлайн , автор Фейнман Ричард Филлипс
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 48 49 50 51 52 53 54 55 56 ... 68 ВПЕРЕД
Перейти на страницу:

Фейнмановские лекции по физике. 9. Квантовая механика II - _443.jpg

Фиг. 17.8. Схематическая диаграмма уровней анергии атомного электрона в присут­ствии других электронов. Масштаб иной, нежели па фиг. 17.7.

Значит, в атоме лития два элект­рона будут в 1s-состояниях, а один — в 2s-состоянии. Поскольку электрон в 2s-состоянии обладает более высокой энергией, чем электрон в 1s-состоянии, то его сравнительно легко удалить. Ионизационная энергия лития всего 5,4 эв, и он весьма активен химически.

Так постепенно перед вами развертывается вся картина; в табл. 17.2 мы привели список первых 36 элементов, отметив состояния, занимаемые электронами в основном состоянии каж­дого атома. Таблица дает энергию ионизации для наиболее слабо связанного электрона и количество электронов, занимающих каждую «оболочку», т. е. состояние с одним и тем же п.

Таблица 17.2 · ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ ПЕРВЫХ

36 ЭЛЕМЕНТОВ (число электронов в разных состояниях)

Фейнмановские лекции по физике. 9. Квантовая механика II - _444.jpg

Поскольку разные l-состояния обладают разными энергиями, то каждое значение l отвечает некоторой подоболочке из 2(2l+1) возможных состояний (с различными m и различными направле­ниями спина). У всех у них энергия одинакова с точностью до некоторых слабых эффектов, которыми мы пренебрежем.

Бериллий похож на литий, только у него в 2s-состоянии на­ходятся два электрона, а в заполненной 1s-оболочке тоже два.

От В до Ne

У бора 5 электронов. Пятый должен уйти в 2p-состояние. Всего бывает 2x3 = 6 разных 2p-состояний, поэтому можно продолжать добавлять по электрону, пока не дойдем до 8. Так мы доберемся до неона. Добавляя эти электроны, мы уве­личиваем также Z, поэтому все электронное распределение все теснее и теснее стягивается к ядру и энергия 2p-состояний все снижается и снижается, К тому времени, когда мы достигнем неона, энергия ионизации возрастет до 21,6 эв. Неон легко своего электрона не отдает. У него к тому же больше нет пустых мест на орбите, которые можно заполнить, так что и чужие электроны ему не нужны. Стало быть, неон химически инертен. У фтора есть пустое место, попав на которое, электрон может оказаться в состоянии с низкой энергией, поэтому в химиче­ских реакциях фтор очень активен.

От Na до Ar

В натрии одиннадцатый электрон вынужден начать новую оболочку, переходя в 3s-состояние. Уровень энергии этого состояния намного выше; энергия ионизации резко спадает; натрий химически очень активен. От натрия до аргона s- и p-состояния с n=3 заполняются в той же последовательности, как от лития до неона. Угловые конфигурации электронов во внешней незаполненной оболочке идут в той же последователь­ности, и прогрессирующий рост энергии ионизации тоже весьма схож с тем, что было раньше. Вы теперь понимаете, почему хи­мические свойства с ростом атомного числа повторяются. Хи­мическое действие магния очень похоже на бериллий, кремния — на углерод, хлора — на фтор. Аргон, подобно неону, инертен. Быть может, вы уже обратили внимание на то, что в последо­вательности энергий ионизации от лития до неона есть неболь­шая особенность, и такая же особенность наблюдается между натрием и аргоном. Последний электрон прикреплен к атому кислорода чуть слабее, чем можно было ожидать. Тем же са­мым отличается сера. Отчего бы это? Это можно понять, если чуть внимательнее вдуматься в эффекты взаимодействия между электронами. Подумаем о том, что бывает, когда мы помещаем в атом бора первый 2p-электрон. Он имеет шесть возможностей — три возможных р-состояния, в каждом по два спина.

Представим, что электрон со спином вверх попадает в состоя­ние с m=0, которое мы также будем называть «z»-состоянием, потому что оно облегает ось z. Ну, а что произойдет в углероде? Теперь уже 2p-электронов два. Если один из них попал в «z»-состояние, то куда попадет второй? Ниже всего его энергия будет тогда, когда он расположится подальше от первого элект­рона. Этого можно достичь, попав, скажем, в «x»-состояние 2p-оболочки. (Это состояние, как вы помните,— просто линей­ная комбинация состояний с m= +1и с m=-1.) Дальше, когда мы перейдем к азоту, то у тройки 2p-электронов наимень­шая энергия взаимного отталкивания будет тогда, когда один из них попадет в «x»-конфигурацию, другой — в «у», третий — в «z». Весь этот хоровод, однако, для кислорода не проходит. Четвертому электрону уже ничего не остается, как попасть в одно из заполненных состояний, держа при этом спин вниз. Тот элект­рон, который уже находится в этом состоянии, начнет его силь­но отталкивать, так что его энергия не будет такой низкой, ка­кой она была бы в противном случае, поэтому его легче будет удалить. Этим и объясняется разрыв в последовательности энер­гий связи, который появляется между азотом и кислородом, и между фосфором и серой.

От К до Zn

Можно было бы подумать, что за аргоном новые электроны начнут заполнять состояние 3d. Но нет! Как мы уже говорили (и иллюстрировали фиг. 17.7), состояния с высшими моментами сдвинуты по энергии вверх. К моменту, когда мы подошли к 3d-состояниям, они по энергии оказываются задвинутыми нем­ножко выше энергии 4s-состояния. Поэтому в калии последний электрон попадет в 4s-состояние. После этого в кальции оболочка заполнится (двумя электронами), а Зd-состояния начнут запол­няться у скандия, титана и ванадия.

Энергии 3р- и 4s-состояний так близки друг к другу, что ма­лозаметные эффекты легко сдвигают равновесие в ту или иную сторону. К моменту, когда придет время поместить в Зd-состояния четыре электрона, их отталкивание так подымет энергию 4s-состояния, что она станет чуть выше энергии Зd-состояния, поэтому один электрон из s уходит в d. И для хрома не полу­чается ожидавшаяся комбинация 4, 2, а вместо этого выступает комбинация 5, 1. Новый электрон, добавляемый, чтобы полу­чить марганец, опять заполняет оболочку 4s и затем одно за другим идет заполнение Зd-оболочки, пока мы не доберемся до меди.

Но так как самая внешняя оболочка марганца, железа, ко­бальта и никеля имеет одну и ту же конфигурацию, то все они обладают близкими химическими свойствами. (Этот эффект еще сильнее выражен у редкоземельных элементов. У них внешняя оболочка одинакова, а заполняется постепенно внутренняя ячейка, что меньше сказывается на их химических свойствах.) То же и в меди. В ней тоже построение Зd-оболочки завер­шается грабежом: из 4s-оболочки уводится один электрон. Энергия комбинации 10, 1, однако, настолько близка у меди к энергии комбинации 9, 2, что равновесие может сместиться уже оттого, что поблизости стоит другой атом. По этой причине два последних электрона меди примерно равноценны, и валент­ность меди равна то 1, то 2. (Временами она проявляет себя так, как если бы ее электроны были в комбинации 9, 2.) Похо­жие вещи случаются и в других местах таблицы; они-то и от­ветственны за то, что другие металлы, такие, как железо, со­единяются химически то с той, то с другой валентностью. Нако­нец, у цинка обе оболочки 3d и 4s заполняются раз и навсегда.

От Ga до Kr

От галлия до криптона последовательность опять продол­жается нормально, заполняя 4p-оболочку. Внешние оболочки, энергии и химические свойства повторяют картину изменений на участке от бора до неона и от алюминия до аргона.

Криптон, как и аргон или неон, известен как «благородный» газ. Все эти три «благородных» газа химически «инертны». Это означает только то, что после того, как они заполнили обо­лочки со сравнительно низкими энергиями, редки будут случаи, когда им станет энергетически выгодно соединиться в простые сочетания с другими элементами. Но для «благородства» недо­статочно просто обладать заполненной оболочкой. У бериллия, например, или у магния заполнены s-оболочки, но энергия этих оболочек чересчур высока, чтобы можно было говорить об устойчивости. Точно так же можно было бы ожидать появления другого «благородного» элемента где-то возле никеля, если бы энергия у 3d-оболочки была бы чуть пониже (или у 4s-оболочки повыше). С другой стороны, криптон не вполне инертен; он об­разует с хлором слабо связанное соединение.

1 ... 48 49 50 51 52 53 54 55 56 ... 68 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название