Фейнмановские лекции по физике. 9. Квантовая механика II
Фейнмановские лекции по физике. 9. Квантовая механика II читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Поскольку поле с потенциалом V, в котором движется электрон, зависит только от r, а не от q и не от j, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e2/r; оно справедливо при движении в любом «центральном поле» — поле, зависящем только от r.
Представим себе некоторое возможное состояние электрона; внутренняя угловая структура этого состояния будет определяться квантовым числом l. В зависимости от «ориентации» полного момента количества движения относительно оси z его проекция т на ось z может равняться одному из 2l+1 чисел между +l и -l. Пусть, например, m=1. С какой амплитудой электрон окажется на оси z на расстоянии r от начала? С нулевой. Электрон на оси z не может иметь какого-либо орбитального момента относительно этой оси. Но пусть тогда m=0. Вот это другое дело; теперь уже может появиться не равная нулю амплитуда того, что электрон окажется на оси z на таком-то расстоянии от протона. Обозначим эту амплитуду Fl(r). Это — амплитуда того, что электрон будет обнаружен на расстоянии r по оси z, когда атом находится в состоянии | l, 0>, т. е. в состоянии с орбитальным моментом l и его z-компонентой m=0. А если нам известно Fl(r), то известно все. Теперь уже в любом состоянии |l, m>мы можем узнать амплитуду ylm (r) того, что электрон обнаружится в произвольном месте атома. Как мы это узнаем? А вот следите. Пусть у нас есть атом в состоянии | l, m>. Какова амплитуда того, что электрон обнаружится под углом q, j и на расстоянии r от начала? Проведите новую ось z, скажем z', под этим углом (фиг. 17.3) и задайте вопрос: какова амплитуда того, что электрон окажется на новой оси z на расстоянии r?

Фиг. 17.3. Точка (х, у, z) лежит на оси z' системы координат х' , у', z'.
Мы знаем, что он не сможет оказаться на оси z', если только m — его z'-компонента момента количества движения — не равна нулю. Когда же m' =0, то амплитуда того, что электрон обнаружится на оси z', есть Fl(r). Значит, результат получится перемножением двух амплитуд. Первая это амплитуда того, что атом, находящийся в состоянии |l, т> относительно оси z, окажется в состоянии | l, m'=0> относительно оси z' . Умножьте эту амплитуду на Fl (r) и вы получите амплитуду yl,m(r) того, что электрон обнаружится в точке (r, q, j) относительно первоначальной системы осей.
Давайте все это распишем. Матрицы преобразования для поворотов мы уже вычислили. Чтобы перейти от системы х, у, z к системе х', у', z' (см. фиг. 17.3), можно сперва сделать поворот вокруг оси z на угол j, а потом сделать поворот вокруг новой оси у (оси у') на угол q. Совместный поворот выразится произведением
Rу(q)Rz(j).
Амплитуда того, что после поворота обнаружится состояние | l, m' =0>, есть
В итоге получаем
Орбитальное движение может обладать только целыми значениями l. (Если электрон может быть обнаружен в любом месте, где r№0, то имеется некоторая амплитуда того, что в этом направлении будет m=0. А состояния с m=0бывают только при целых спинах.) Матрицы поворота для l=1 приведены в табл.15.2 (стр. 129). Для больших l вы можете воспользоваться общими формулами, выведенными в гл. 16. Матрицы Rz(j) и Ry(q) написаны по отдельности, но как их комбинировать, вы знаете. В общем случае вы начнете с состояния | l, m> и подействуете на него оператором Rz(j), получив новое состояние Rz(j)|l, т>(которое просто равно eimj|l, m>). Затем вы подействуете на это состояние оператором Ry(q) и получите состояние Ry(q) Rz(j) |l, m>. Умножение на <l, 0| даст вам матричный элемент (17.31).
Матричные элементы операции поворота — это алгебраические функции от q и j. Те частные виды функций, которые появляются в (17.31), возникают и во многих других задачах, связанных с волнами на сфере. Им присвоили особое имя. Правда, не у всех авторов обозначения одинаковы; чаще всего все же пишут
Функции Yl,m(q, j) называют сферическими гармониками, a a — просто численный множитель, который зависит от того, как определено Yl,m. При обычном определении
В этих обозначениях волновые функции водорода записываются так:
Угловые функции Yl,m(q,j) важны не только во многих квантовомеханических задачах, но и во многих областях классической физики, в которых встречается оператор С2, например в электромагнетизме. В качестве другого примера их применения в квантовой механике рассмотрим распад возбужденного состояния Ne20 (о котором говорилось в предыдущей главе), которое испускает a-частицу и превращается в О16:
Neao'^o^-fHe4.
Допустим, что возбужденное состояние имеет спин l (обязательно целый), а z-компонента момента количества движения есть т. Спросим вот о чем: если даны l и т, токакова амплитуда того, что a-частица вылетит в направлении, составляющем с осью z угол q и с плоскостью xz угол j (фиг. 17.4)?

Фиг. 17.4. Распад возбужденного состояния Ne20.
Решить эту задачу нам поможет следующее наблюдение. Распад, в котором a-частица вылетает прямо вдоль оси z, должен происходить из состояния с m=0. Это потому, что у самих О16 и a-частицы спин равен нулю, а за счет движения вдоль оси z момента вокруг этой оси не создашь. Обозначим эту амплитуду а (на единицу телесного угла). Тогда, чтобы найти амплитуду распада под произвольным углом (см. фиг. 17.4), остается только узнать, с какой амплитудой данное начальное состояние будет обладать нулевым моментом относительно направления распада. Амплитуда того, что распад будет в направлении (q, j), тогда будет равна произведению а на амплитуду того, что состояние |l, т>относительно оси z окажется в состоянии |l, 0> относительно z' (направления распада). Эта последняя амплитуда как раз и есть то, что мы писали в (17.31). Вероятность увидеть a-частицу под углом (q, j), стало быть, равна
Для примера рассмотрим начальное состояние с l=1 и различными т. Из табл. 15.2 (стр. 129) мы знаем все нужные амплитуды:

